ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.31
Committed: Sat Jan 25 18:27:39 2014 UTC (10 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P2, rad4R2, rad4R2P1
Changes since 2.30: +2 -3 lines
Log Message:
Enabled back face invisibility (-bv0) for transparent/translucent types

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_brdf.c,v 2.30 2013/08/07 05:10:09 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with arbitrary BRDF's
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "data.h"
13 #include "source.h"
14 #include "otypes.h"
15 #include "rtotypes.h"
16 #include "func.h"
17
18 /*
19 * Arguments to this material include the color and specularity.
20 * String arguments include the reflection function and files.
21 * The BRDF is currently used just for the specular component to light
22 * sources. Reflectance values or data coordinates are functions
23 * of the direction to the light source. (Data modification functions
24 * are passed the source direction as args 2-4.)
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PFUNC and MAT_MFUNC are:
29 * 2+ func funcfile transform
30 * 0
31 * 4+ red grn blu specularity A5 ..
32 *
33 * Arguments for MAT_PDATA and MAT_MDATA are:
34 * 4+ func datafile funcfile v0 .. transform
35 * 0
36 * 4+ red grn blu specularity A5 ..
37 *
38 * Arguments for MAT_TFUNC are:
39 * 2+ func funcfile transform
40 * 0
41 * 6+ red grn blu rspec trans tspec A7 ..
42 *
43 * Arguments for MAT_TDATA are:
44 * 4+ func datafile funcfile v0 .. transform
45 * 0
46 * 6+ red grn blu rspec trans tspec A7 ..
47 *
48 * Arguments for the more general MAT_BRTDF are:
49 * 10+ rrefl grefl brefl
50 * rtrns gtrns btrns
51 * rbrtd gbrtd bbrtd
52 * funcfile transform
53 * 0
54 * 9+ rdf gdf bdf
55 * rdb gdb bdb
56 * rdt gdt bdt A10 ..
57 *
58 * In addition to the normal variables available to functions,
59 * we define the following:
60 * NxP, NyP, NzP - perturbed surface normal
61 * RdotP - perturbed ray dot product
62 * CrP, CgP, CbP - perturbed material color (or pattern)
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
69 COLOR mcolor; /* material (or pattern) color */
70 COLOR rdiff; /* diffuse reflection */
71 COLOR tdiff; /* diffuse transmission */
72 double rspec; /* specular reflectance (1 for BRDTF) */
73 double trans; /* transmissivity (.5 for BRDTF) */
74 double tspec; /* specular transmittance (1 for BRDTF) */
75 FVECT pnorm; /* perturbed surface normal */
76 double pdot; /* perturbed dot product */
77 } BRDFDAT; /* BRDF material data */
78
79
80 static int setbrdfunc(BRDFDAT *np);
81
82
83 static void
84 dirbrdf( /* compute source contribution */
85 COLOR cval, /* returned coefficient */
86 void *nnp, /* material data */
87 FVECT ldir, /* light source direction */
88 double omega /* light source size */
89 )
90 {
91 BRDFDAT *np = nnp;
92 double ldot;
93 double dtmp;
94 COLOR ctmp;
95 FVECT ldx;
96 static double vldx[5], pt[MAXDIM];
97 char **sa;
98 int i;
99 #define lddx (vldx+1)
100
101 setcolor(cval, 0.0, 0.0, 0.0);
102
103 ldot = DOT(np->pnorm, ldir);
104
105 if (ldot <= FTINY && ldot >= -FTINY)
106 return; /* too close to grazing */
107
108 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
109 return; /* wrong side */
110
111 if (ldot > 0.0) {
112 /*
113 * Compute and add diffuse reflected component to returned
114 * color. The diffuse reflected component will always be
115 * modified by the color of the material.
116 */
117 copycolor(ctmp, np->rdiff);
118 dtmp = ldot * omega / PI;
119 scalecolor(ctmp, dtmp);
120 addcolor(cval, ctmp);
121 } else {
122 /*
123 * Diffuse transmitted component.
124 */
125 copycolor(ctmp, np->tdiff);
126 dtmp = -ldot * omega / PI;
127 scalecolor(ctmp, dtmp);
128 addcolor(cval, ctmp);
129 }
130 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
131 return; /* diffuse only */
132 /* set up function */
133 setbrdfunc(np);
134 sa = np->mp->oargs.sarg;
135 errno = 0;
136 /* transform light vector */
137 multv3(ldx, ldir, funcxf.xfm);
138 for (i = 0; i < 3; i++)
139 lddx[i] = ldx[i]/funcxf.sca;
140 lddx[3] = omega;
141 /* compute BRTDF */
142 if (np->mp->otype == MAT_BRTDF) {
143 if (sa[6][0] == '0') /* special case */
144 colval(ctmp,RED) = 0.0;
145 else
146 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
147 if (sa[7][0] == '0')
148 colval(ctmp,GRN) = 0.0;
149 else if (!strcmp(sa[7],sa[6]))
150 colval(ctmp,GRN) = colval(ctmp,RED);
151 else
152 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
153 if (!strcmp(sa[8],sa[6]))
154 colval(ctmp,BLU) = colval(ctmp,RED);
155 else if (!strcmp(sa[8],sa[7]))
156 colval(ctmp,BLU) = colval(ctmp,GRN);
157 else
158 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
159 dtmp = bright(ctmp);
160 } else if (np->dp == NULL) {
161 dtmp = funvalue(sa[0], 4, lddx);
162 setcolor(ctmp, dtmp, dtmp, dtmp);
163 } else {
164 for (i = 0; i < np->dp->nd; i++)
165 pt[i] = funvalue(sa[3+i], 4, lddx);
166 vldx[0] = datavalue(np->dp, pt);
167 dtmp = funvalue(sa[0], 5, vldx);
168 setcolor(ctmp, dtmp, dtmp, dtmp);
169 }
170 if ((errno == EDOM) | (errno == ERANGE)) {
171 objerror(np->mp, WARNING, "compute error");
172 return;
173 }
174 if (dtmp <= FTINY)
175 return;
176 if (ldot > 0.0) {
177 /*
178 * Compute reflected non-diffuse component.
179 */
180 if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
181 multcolor(ctmp, np->mcolor);
182 dtmp = ldot * omega * np->rspec;
183 scalecolor(ctmp, dtmp);
184 addcolor(cval, ctmp);
185 } else {
186 /*
187 * Compute transmitted non-diffuse component.
188 */
189 if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
190 multcolor(ctmp, np->mcolor);
191 dtmp = -ldot * omega * np->tspec;
192 scalecolor(ctmp, dtmp);
193 addcolor(cval, ctmp);
194 }
195 #undef lddx
196 }
197
198
199 int
200 m_brdf( /* color a ray that hit a BRDTfunc material */
201 OBJREC *m,
202 RAY *r
203 )
204 {
205 int hitfront = 1;
206 BRDFDAT nd;
207 RAY sr;
208 double mirtest=0, mirdist=0;
209 double transtest=0, transdist=0;
210 int hasrefl, hastrans;
211 int hastexture;
212 COLOR ctmp;
213 FVECT vtmp;
214 double d;
215 MFUNC *mf;
216 int i;
217 /* check arguments */
218 if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
219 objerror(m, USER, "bad # arguments");
220 nd.mp = m;
221 nd.pr = r;
222 /* dummy values */
223 nd.rspec = nd.tspec = 1.0;
224 nd.trans = 0.5;
225 /* diffuse reflectance */
226 if (r->rod > 0.0)
227 setcolor(nd.rdiff, m->oargs.farg[0],
228 m->oargs.farg[1],
229 m->oargs.farg[2]);
230 else
231 setcolor(nd.rdiff, m->oargs.farg[3],
232 m->oargs.farg[4],
233 m->oargs.farg[5]);
234 /* diffuse transmittance */
235 setcolor(nd.tdiff, m->oargs.farg[6],
236 m->oargs.farg[7],
237 m->oargs.farg[8]);
238 /* get modifiers */
239 raytexture(r, m->omod);
240 hastexture = DOT(r->pert,r->pert) > FTINY*FTINY;
241 if (hastexture) { /* perturb normal */
242 nd.pdot = raynormal(nd.pnorm, r);
243 } else {
244 VCOPY(nd.pnorm, r->ron);
245 nd.pdot = r->rod;
246 }
247 if (r->rod < 0.0) { /* orient perturbed values */
248 nd.pdot = -nd.pdot;
249 for (i = 0; i < 3; i++) {
250 nd.pnorm[i] = -nd.pnorm[i];
251 r->pert[i] = -r->pert[i];
252 }
253 hitfront = 0;
254 }
255 copycolor(nd.mcolor, r->pcol); /* get pattern color */
256 multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
257 multcolor(nd.tdiff, nd.mcolor);
258 hasrefl = bright(nd.rdiff) > FTINY;
259 hastrans = bright(nd.tdiff) > FTINY;
260 /* load cal file */
261 nd.dp = NULL;
262 mf = getfunc(m, 9, 0x3f, 0);
263 /* compute transmitted ray */
264 setbrdfunc(&nd);
265 errno = 0;
266 setcolor(ctmp, evalue(mf->ep[3]),
267 evalue(mf->ep[4]),
268 evalue(mf->ep[5]));
269 if ((errno == EDOM) | (errno == ERANGE))
270 objerror(m, WARNING, "compute error");
271 else if (rayorigin(&sr, TRANS, r, ctmp) == 0) {
272 if (!(r->crtype & SHADOW) && hastexture) {
273 /* perturb direction */
274 VSUM(sr.rdir, r->rdir, r->pert, -.75);
275 if (normalize(sr.rdir) == 0.0) {
276 objerror(m, WARNING, "illegal perturbation");
277 VCOPY(sr.rdir, r->rdir);
278 }
279 } else {
280 VCOPY(sr.rdir, r->rdir);
281 }
282 rayvalue(&sr);
283 multcolor(sr.rcol, sr.rcoef);
284 addcolor(r->rcol, sr.rcol);
285 if (!hastexture) {
286 transtest = 2.0*bright(sr.rcol);
287 transdist = r->rot + sr.rt;
288 }
289 }
290 if (r->crtype & SHADOW) /* the rest is shadow */
291 return(1);
292 /* compute reflected ray */
293 setbrdfunc(&nd);
294 errno = 0;
295 setcolor(ctmp, evalue(mf->ep[0]),
296 evalue(mf->ep[1]),
297 evalue(mf->ep[2]));
298 if ((errno == EDOM) | (errno == ERANGE))
299 objerror(m, WARNING, "compute error");
300 else if (rayorigin(&sr, REFLECTED, r, ctmp) == 0) {
301 VSUM(sr.rdir, r->rdir, nd.pnorm, 2.*nd.pdot);
302 checknorm(sr.rdir);
303 rayvalue(&sr);
304 multcolor(sr.rcol, sr.rcoef);
305 addcolor(r->rcol, sr.rcol);
306 if (!hastexture && r->ro != NULL && isflat(r->ro->otype)) {
307 mirtest = 2.0*bright(sr.rcol);
308 mirdist = r->rot + sr.rt;
309 }
310 }
311 /* compute ambient */
312 if (hasrefl) {
313 if (!hitfront)
314 flipsurface(r);
315 copycolor(ctmp, nd.rdiff);
316 multambient(ctmp, r, nd.pnorm);
317 addcolor(r->rcol, ctmp); /* add to returned color */
318 if (!hitfront)
319 flipsurface(r);
320 }
321 if (hastrans) { /* from other side */
322 if (hitfront)
323 flipsurface(r);
324 vtmp[0] = -nd.pnorm[0];
325 vtmp[1] = -nd.pnorm[1];
326 vtmp[2] = -nd.pnorm[2];
327 copycolor(ctmp, nd.tdiff);
328 multambient(ctmp, r, vtmp);
329 addcolor(r->rcol, ctmp);
330 if (hitfront)
331 flipsurface(r);
332 }
333 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
334 direct(r, dirbrdf, &nd); /* add direct component */
335
336 d = bright(r->rcol); /* set effective distance */
337 if (transtest > d)
338 r->rt = transdist;
339 else if (mirtest > d)
340 r->rt = mirdist;
341
342 return(1);
343 }
344
345
346
347 int
348 m_brdf2( /* color a ray that hit a BRDF material */
349 OBJREC *m,
350 RAY *r
351 )
352 {
353 BRDFDAT nd;
354 COLOR ctmp;
355 FVECT vtmp;
356 double dtmp;
357 /* always a shadow */
358 if (r->crtype & SHADOW)
359 return(1);
360 /* check arguments */
361 if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
362 ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
363 objerror(m, USER, "bad # arguments");
364 /* check for back side */
365 if (r->rod < 0.0) {
366 if (!backvis) {
367 raytrans(r);
368 return(1);
369 }
370 raytexture(r, m->omod);
371 flipsurface(r); /* reorient if backvis */
372 } else
373 raytexture(r, m->omod);
374
375 nd.mp = m;
376 nd.pr = r;
377 /* get material color */
378 setcolor(nd.mcolor, m->oargs.farg[0],
379 m->oargs.farg[1],
380 m->oargs.farg[2]);
381 /* get specular component */
382 nd.rspec = m->oargs.farg[3];
383 /* compute transmittance */
384 if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
385 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
386 nd.tspec = nd.trans * m->oargs.farg[5];
387 dtmp = nd.trans - nd.tspec;
388 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
389 } else {
390 nd.tspec = nd.trans = 0.0;
391 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
392 }
393 /* compute reflectance */
394 dtmp = 1.0 - nd.trans - nd.rspec;
395 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
396 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
397 multcolor(nd.mcolor, r->pcol); /* modify material color */
398 multcolor(nd.rdiff, nd.mcolor);
399 multcolor(nd.tdiff, nd.mcolor);
400 /* load auxiliary files */
401 if (hasdata(m->otype)) {
402 nd.dp = getdata(m->oargs.sarg[1]);
403 getfunc(m, 2, 0, 0);
404 } else {
405 nd.dp = NULL;
406 getfunc(m, 1, 0, 0);
407 }
408 /* compute ambient */
409 if (nd.trans < 1.0-FTINY) {
410 copycolor(ctmp, nd.mcolor); /* modified by material color */
411 scalecolor(ctmp, 1.0-nd.trans);
412 multambient(ctmp, r, nd.pnorm);
413 addcolor(r->rcol, ctmp); /* add to returned color */
414 }
415 if (nd.trans > FTINY) { /* from other side */
416 flipsurface(r);
417 vtmp[0] = -nd.pnorm[0];
418 vtmp[1] = -nd.pnorm[1];
419 vtmp[2] = -nd.pnorm[2];
420 copycolor(ctmp, nd.mcolor);
421 scalecolor(ctmp, nd.trans);
422 multambient(ctmp, r, vtmp);
423 addcolor(r->rcol, ctmp);
424 flipsurface(r);
425 }
426 /* add direct component */
427 direct(r, dirbrdf, &nd);
428
429 return(1);
430 }
431
432
433 static int
434 setbrdfunc( /* set up brdf function and variables */
435 BRDFDAT *np
436 )
437 {
438 FVECT vec;
439
440 if (setfunc(np->mp, np->pr) == 0)
441 return(0); /* it's OK, setfunc says we're done */
442 /* else (re)assign special variables */
443 multv3(vec, np->pnorm, funcxf.xfm);
444 varset("NxP", '=', vec[0]/funcxf.sca);
445 varset("NyP", '=', vec[1]/funcxf.sca);
446 varset("NzP", '=', vec[2]/funcxf.sca);
447 varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 :
448 np->pdot >= 1.0 ? 1.0 : np->pdot);
449 varset("CrP", '=', colval(np->mcolor,RED));
450 varset("CgP", '=', colval(np->mcolor,GRN));
451 varset("CbP", '=', colval(np->mcolor,BLU));
452 return(1);
453 }