ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.25
Committed: Fri Sep 7 15:25:01 2007 UTC (16 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R0, rad3R9
Changes since 2.24: +4 -4 lines
Log Message:
Minor efficiency improvements

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_brdf.c,v 2.24 2007/08/22 21:21:51 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with arbitrary BRDF's
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "data.h"
13 #include "source.h"
14 #include "otypes.h"
15 #include "rtotypes.h"
16 #include "func.h"
17
18 /*
19 * Arguments to this material include the color and specularity.
20 * String arguments include the reflection function and files.
21 * The BRDF is currently used just for the specular component to light
22 * sources. Reflectance values or data coordinates are functions
23 * of the direction to the light source. (Data modification functions
24 * are passed the source direction as args 2-4.)
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PFUNC and MAT_MFUNC are:
29 * 2+ func funcfile transform
30 * 0
31 * 4+ red grn blu specularity A5 ..
32 *
33 * Arguments for MAT_PDATA and MAT_MDATA are:
34 * 4+ func datafile funcfile v0 .. transform
35 * 0
36 * 4+ red grn blu specularity A5 ..
37 *
38 * Arguments for MAT_TFUNC are:
39 * 2+ func funcfile transform
40 * 0
41 * 4+ red grn blu rspec trans tspec A7 ..
42 *
43 * Arguments for MAT_TDATA are:
44 * 4+ func datafile funcfile v0 .. transform
45 * 0
46 * 4+ red grn blu rspec trans tspec A7 ..
47 *
48 * Arguments for the more general MAT_BRTDF are:
49 * 10+ rrefl grefl brefl
50 * rtrns gtrns btrns
51 * rbrtd gbrtd bbrtd
52 * funcfile transform
53 * 0
54 * 9+ rdf gdf bdf
55 * rdb gdb bdb
56 * rdt gdt bdt A10 ..
57 *
58 * In addition to the normal variables available to functions,
59 * we define the following:
60 * NxP, NyP, NzP - perturbed surface normal
61 * RdotP - perturbed ray dot product
62 * CrP, CgP, CbP - perturbed material color (or pattern)
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
69 COLOR mcolor; /* material (or pattern) color */
70 COLOR rdiff; /* diffuse reflection */
71 COLOR tdiff; /* diffuse transmission */
72 double rspec; /* specular reflectance (1 for BRDTF) */
73 double trans; /* transmissivity (.5 for BRDTF) */
74 double tspec; /* specular transmittance (1 for BRDTF) */
75 FVECT pnorm; /* perturbed surface normal */
76 double pdot; /* perturbed dot product */
77 } BRDFDAT; /* BRDF material data */
78
79
80 static srcdirf_t dirbrdf;
81 static int setbrdfunc(BRDFDAT *np);
82
83
84 static void
85 dirbrdf( /* compute source contribution */
86 COLOR cval, /* returned coefficient */
87 void *nnp, /* material data */
88 FVECT ldir, /* light source direction */
89 double omega /* light source size */
90 )
91 {
92 register BRDFDAT *np = nnp;
93 double ldot;
94 double dtmp;
95 COLOR ctmp;
96 FVECT ldx;
97 static double vldx[5], pt[MAXDIM];
98 register char **sa;
99 register int i;
100 #define lddx (vldx+1)
101
102 setcolor(cval, 0.0, 0.0, 0.0);
103
104 ldot = DOT(np->pnorm, ldir);
105
106 if (ldot <= FTINY && ldot >= -FTINY)
107 return; /* too close to grazing */
108
109 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
110 return; /* wrong side */
111
112 if (ldot > 0.0) {
113 /*
114 * Compute and add diffuse reflected component to returned
115 * color. The diffuse reflected component will always be
116 * modified by the color of the material.
117 */
118 copycolor(ctmp, np->rdiff);
119 dtmp = ldot * omega / PI;
120 scalecolor(ctmp, dtmp);
121 addcolor(cval, ctmp);
122 } else {
123 /*
124 * Diffuse transmitted component.
125 */
126 copycolor(ctmp, np->tdiff);
127 dtmp = -ldot * omega / PI;
128 scalecolor(ctmp, dtmp);
129 addcolor(cval, ctmp);
130 }
131 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
132 return; /* diffuse only */
133 /* set up function */
134 setbrdfunc(np);
135 sa = np->mp->oargs.sarg;
136 errno = 0;
137 /* transform light vector */
138 multv3(ldx, ldir, funcxf.xfm);
139 for (i = 0; i < 3; i++)
140 lddx[i] = ldx[i]/funcxf.sca;
141 lddx[3] = omega;
142 /* compute BRTDF */
143 if (np->mp->otype == MAT_BRTDF) {
144 if (sa[6][0] == '0') /* special case */
145 colval(ctmp,RED) = 0.0;
146 else
147 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
148 if (sa[7][0] == '0')
149 colval(ctmp,GRN) = 0.0;
150 else if (!strcmp(sa[7],sa[6]))
151 colval(ctmp,GRN) = colval(ctmp,RED);
152 else
153 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
154 if (!strcmp(sa[8],sa[6]))
155 colval(ctmp,BLU) = colval(ctmp,RED);
156 else if (!strcmp(sa[8],sa[7]))
157 colval(ctmp,BLU) = colval(ctmp,GRN);
158 else
159 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
160 dtmp = bright(ctmp);
161 } else if (np->dp == NULL) {
162 dtmp = funvalue(sa[0], 4, lddx);
163 setcolor(ctmp, dtmp, dtmp, dtmp);
164 } else {
165 for (i = 0; i < np->dp->nd; i++)
166 pt[i] = funvalue(sa[3+i], 4, lddx);
167 vldx[0] = datavalue(np->dp, pt);
168 dtmp = funvalue(sa[0], 5, vldx);
169 setcolor(ctmp, dtmp, dtmp, dtmp);
170 }
171 if ((errno == EDOM) | (errno == ERANGE)) {
172 objerror(np->mp, WARNING, "compute error");
173 return;
174 }
175 if (dtmp <= FTINY)
176 return;
177 if (ldot > 0.0) {
178 /*
179 * Compute reflected non-diffuse component.
180 */
181 if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
182 multcolor(ctmp, np->mcolor);
183 dtmp = ldot * omega * np->rspec;
184 scalecolor(ctmp, dtmp);
185 addcolor(cval, ctmp);
186 } else {
187 /*
188 * Compute transmitted non-diffuse component.
189 */
190 if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
191 multcolor(ctmp, np->mcolor);
192 dtmp = -ldot * omega * np->tspec;
193 scalecolor(ctmp, dtmp);
194 addcolor(cval, ctmp);
195 }
196 #undef lddx
197 }
198
199
200 extern int
201 m_brdf( /* color a ray that hit a BRDTfunc material */
202 register OBJREC *m,
203 register RAY *r
204 )
205 {
206 int hitfront = 1;
207 BRDFDAT nd;
208 RAY sr;
209 double mirtest=0, mirdist=0;
210 double transtest, transdist;
211 int hasrefl, hastrans;
212 int hastexture;
213 COLOR ctmp;
214 FVECT vtmp;
215 double d;
216 register MFUNC *mf;
217 register int i;
218 /* check arguments */
219 if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
220 objerror(m, USER, "bad # arguments");
221 nd.mp = m;
222 nd.pr = r;
223 /* dummy values */
224 nd.rspec = nd.tspec = 1.0;
225 nd.trans = 0.5;
226 /* diffuse reflectance */
227 if (r->rod > 0.0)
228 setcolor(nd.rdiff, m->oargs.farg[0],
229 m->oargs.farg[1],
230 m->oargs.farg[2]);
231 else
232 setcolor(nd.rdiff, m->oargs.farg[3],
233 m->oargs.farg[4],
234 m->oargs.farg[5]);
235 /* diffuse transmittance */
236 setcolor(nd.tdiff, m->oargs.farg[6],
237 m->oargs.farg[7],
238 m->oargs.farg[8]);
239 /* get modifiers */
240 raytexture(r, m->omod);
241 hastexture = DOT(r->pert,r->pert) > FTINY*FTINY;
242 if (hastexture) { /* perturb normal */
243 nd.pdot = raynormal(nd.pnorm, r);
244 } else {
245 VCOPY(nd.pnorm, r->ron);
246 nd.pdot = r->rod;
247 }
248 if (r->rod < 0.0) { /* orient perturbed values */
249 nd.pdot = -nd.pdot;
250 for (i = 0; i < 3; i++) {
251 nd.pnorm[i] = -nd.pnorm[i];
252 r->pert[i] = -r->pert[i];
253 }
254 hitfront = 0;
255 }
256 copycolor(nd.mcolor, r->pcol); /* get pattern color */
257 multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
258 multcolor(nd.tdiff, nd.mcolor);
259 hasrefl = bright(nd.rdiff) > FTINY;
260 hastrans = bright(nd.tdiff) > FTINY;
261 /* load cal file */
262 nd.dp = NULL;
263 mf = getfunc(m, 9, 0x3f, 0);
264 /* compute transmitted ray */
265 setbrdfunc(&nd);
266 errno = 0;
267 setcolor(ctmp, evalue(mf->ep[3]),
268 evalue(mf->ep[4]),
269 evalue(mf->ep[5]));
270 if ((errno == EDOM) | (errno == ERANGE))
271 objerror(m, WARNING, "compute error");
272 else if (rayorigin(&sr, TRANS, r, ctmp) == 0) {
273 if (!(r->crtype & SHADOW) && hastexture) {
274 for (i = 0; i < 3; i++) /* perturb direction */
275 sr.rdir[i] = r->rdir[i] - .75*r->pert[i];
276 if (normalize(sr.rdir) == 0.0) {
277 objerror(m, WARNING, "illegal perturbation");
278 VCOPY(sr.rdir, r->rdir);
279 }
280 } else {
281 VCOPY(sr.rdir, r->rdir);
282 }
283 rayvalue(&sr);
284 multcolor(sr.rcol, sr.rcoef);
285 addcolor(r->rcol, sr.rcol);
286 if (!hastexture) {
287 transtest = 2.0*bright(sr.rcol);
288 transdist = r->rot + sr.rt;
289 }
290 }
291 if (r->crtype & SHADOW) /* the rest is shadow */
292 return(1);
293 /* compute reflected ray */
294 setbrdfunc(&nd);
295 errno = 0;
296 setcolor(ctmp, evalue(mf->ep[0]),
297 evalue(mf->ep[1]),
298 evalue(mf->ep[2]));
299 if ((errno == EDOM) | (errno == ERANGE))
300 objerror(m, WARNING, "compute error");
301 else if (rayorigin(&sr, REFLECTED, r, ctmp) == 0) {
302 for (i = 0; i < 3; i++)
303 sr.rdir[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
304 rayvalue(&sr);
305 multcolor(sr.rcol, sr.rcoef);
306 addcolor(r->rcol, sr.rcol);
307 if (!hastexture && r->ro != NULL && isflat(r->ro->otype)) {
308 mirtest = 2.0*bright(sr.rcol);
309 mirdist = r->rot + sr.rt;
310 }
311 }
312 /* compute ambient */
313 if (hasrefl) {
314 if (!hitfront)
315 flipsurface(r);
316 copycolor(ctmp, nd.rdiff);
317 multambient(ctmp, r, nd.pnorm);
318 addcolor(r->rcol, ctmp); /* add to returned color */
319 if (!hitfront)
320 flipsurface(r);
321 }
322 if (hastrans) { /* from other side */
323 if (hitfront)
324 flipsurface(r);
325 vtmp[0] = -nd.pnorm[0];
326 vtmp[1] = -nd.pnorm[1];
327 vtmp[2] = -nd.pnorm[2];
328 copycolor(ctmp, nd.tdiff);
329 multambient(ctmp, r, vtmp);
330 addcolor(r->rcol, ctmp);
331 if (hitfront)
332 flipsurface(r);
333 }
334 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
335 direct(r, dirbrdf, &nd); /* add direct component */
336
337 d = bright(r->rcol); /* set effective distance */
338 if (transtest > d)
339 r->rt = transdist;
340 else if (mirtest > d)
341 r->rt = mirdist;
342
343 return(1);
344 }
345
346
347
348 extern int
349 m_brdf2( /* color a ray that hit a BRDF material */
350 register OBJREC *m,
351 register RAY *r
352 )
353 {
354 BRDFDAT nd;
355 COLOR ctmp;
356 FVECT vtmp;
357 double dtmp;
358 /* always a shadow */
359 if (r->crtype & SHADOW)
360 return(1);
361 /* check arguments */
362 if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
363 ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
364 objerror(m, USER, "bad # arguments");
365 /* check for back side */
366 if (r->rod < 0.0) {
367 if (!backvis && m->otype != MAT_TFUNC
368 && m->otype != MAT_TDATA) {
369 raytrans(r);
370 return(1);
371 }
372 raytexture(r, m->omod);
373 flipsurface(r); /* reorient if backvis */
374 } else
375 raytexture(r, m->omod);
376
377 nd.mp = m;
378 nd.pr = r;
379 /* get material color */
380 setcolor(nd.mcolor, m->oargs.farg[0],
381 m->oargs.farg[1],
382 m->oargs.farg[2]);
383 /* get specular component */
384 nd.rspec = m->oargs.farg[3];
385 /* compute transmittance */
386 if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
387 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
388 nd.tspec = nd.trans * m->oargs.farg[5];
389 dtmp = nd.trans - nd.tspec;
390 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
391 } else {
392 nd.tspec = nd.trans = 0.0;
393 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
394 }
395 /* compute reflectance */
396 dtmp = 1.0 - nd.trans - nd.rspec;
397 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
398 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
399 multcolor(nd.mcolor, r->pcol); /* modify material color */
400 multcolor(nd.rdiff, nd.mcolor);
401 multcolor(nd.tdiff, nd.mcolor);
402 /* load auxiliary files */
403 if (hasdata(m->otype)) {
404 nd.dp = getdata(m->oargs.sarg[1]);
405 getfunc(m, 2, 0, 0);
406 } else {
407 nd.dp = NULL;
408 getfunc(m, 1, 0, 0);
409 }
410 /* compute ambient */
411 if (nd.trans < 1.0-FTINY) {
412 copycolor(ctmp, nd.mcolor); /* modified by material color */
413 scalecolor(ctmp, 1.0-nd.trans);
414 multambient(ctmp, r, nd.pnorm);
415 addcolor(r->rcol, ctmp); /* add to returned color */
416 }
417 if (nd.trans > FTINY) { /* from other side */
418 flipsurface(r);
419 vtmp[0] = -nd.pnorm[0];
420 vtmp[1] = -nd.pnorm[1];
421 vtmp[2] = -nd.pnorm[2];
422 copycolor(ctmp, nd.mcolor);
423 scalecolor(ctmp, nd.trans);
424 multambient(ctmp, r, vtmp);
425 addcolor(r->rcol, ctmp);
426 flipsurface(r);
427 }
428 /* add direct component */
429 direct(r, dirbrdf, &nd);
430
431 return(1);
432 }
433
434
435 static int
436 setbrdfunc( /* set up brdf function and variables */
437 register BRDFDAT *np
438 )
439 {
440 FVECT vec;
441
442 if (setfunc(np->mp, np->pr) == 0)
443 return(0); /* it's OK, setfunc says we're done */
444 /* else (re)assign special variables */
445 multv3(vec, np->pnorm, funcxf.xfm);
446 varset("NxP", '=', vec[0]/funcxf.sca);
447 varset("NyP", '=', vec[1]/funcxf.sca);
448 varset("NzP", '=', vec[2]/funcxf.sca);
449 varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 :
450 np->pdot >= 1.0 ? 1.0 : np->pdot);
451 varset("CrP", '=', colval(np->mcolor,RED));
452 varset("CgP", '=', colval(np->mcolor,GRN));
453 varset("CbP", '=', colval(np->mcolor,BLU));
454 return(1);
455 }