ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.23
Committed: Tue Apr 19 01:15:06 2005 UTC (19 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1, rad3R8
Changes since 2.22: +13 -13 lines
Log Message:
Extensive changes to enable rtrace -oTW option for tracking ray contributions

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_brdf.c,v 2.22 2004/09/09 15:40:02 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with arbitrary BRDF's
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "data.h"
13 #include "source.h"
14 #include "otypes.h"
15 #include "rtotypes.h"
16 #include "func.h"
17
18 /*
19 * Arguments to this material include the color and specularity.
20 * String arguments include the reflection function and files.
21 * The BRDF is currently used just for the specular component to light
22 * sources. Reflectance values or data coordinates are functions
23 * of the direction to the light source. (Data modification functions
24 * are passed the source direction as args 2-4.)
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PFUNC and MAT_MFUNC are:
29 * 2+ func funcfile transform
30 * 0
31 * 4+ red grn blu specularity A5 ..
32 *
33 * Arguments for MAT_PDATA and MAT_MDATA are:
34 * 4+ func datafile funcfile v0 .. transform
35 * 0
36 * 4+ red grn blu specularity A5 ..
37 *
38 * Arguments for MAT_TFUNC are:
39 * 2+ func funcfile transform
40 * 0
41 * 4+ red grn blu rspec trans tspec A7 ..
42 *
43 * Arguments for MAT_TDATA are:
44 * 4+ func datafile funcfile v0 .. transform
45 * 0
46 * 4+ red grn blu rspec trans tspec A7 ..
47 *
48 * Arguments for the more general MAT_BRTDF are:
49 * 10+ rrefl grefl brefl
50 * rtrns gtrns btrns
51 * rbrtd gbrtd bbrtd
52 * funcfile transform
53 * 0
54 * 9+ rdf gdf bdf
55 * rdb gdb bdb
56 * rdt gdt bdt A10 ..
57 *
58 * In addition to the normal variables available to functions,
59 * we define the following:
60 * NxP, NyP, NzP - perturbed surface normal
61 * RdotP - perturbed ray dot product
62 * CrP, CgP, CbP - perturbed material color (or pattern)
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
69 COLOR mcolor; /* material (or pattern) color */
70 COLOR rdiff; /* diffuse reflection */
71 COLOR tdiff; /* diffuse transmission */
72 double rspec; /* specular reflectance (1 for BRDTF) */
73 double trans; /* transmissivity (.5 for BRDTF) */
74 double tspec; /* specular transmittance (1 for BRDTF) */
75 FVECT pnorm; /* perturbed surface normal */
76 double pdot; /* perturbed dot product */
77 } BRDFDAT; /* BRDF material data */
78
79
80 static srcdirf_t dirbrdf;
81 static int setbrdfunc(BRDFDAT *np);
82
83
84 static void
85 dirbrdf( /* compute source contribution */
86 COLOR cval, /* returned coefficient */
87 void *nnp, /* material data */
88 FVECT ldir, /* light source direction */
89 double omega /* light source size */
90 )
91 {
92 register BRDFDAT *np = nnp;
93 double ldot;
94 double dtmp;
95 COLOR ctmp;
96 FVECT ldx;
97 static double vldx[5], pt[MAXDIM];
98 register char **sa;
99 register int i;
100 #define lddx (vldx+1)
101
102 setcolor(cval, 0.0, 0.0, 0.0);
103
104 ldot = DOT(np->pnorm, ldir);
105
106 if (ldot <= FTINY && ldot >= -FTINY)
107 return; /* too close to grazing */
108
109 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
110 return; /* wrong side */
111
112 if (ldot > 0.0) {
113 /*
114 * Compute and add diffuse reflected component to returned
115 * color. The diffuse reflected component will always be
116 * modified by the color of the material.
117 */
118 copycolor(ctmp, np->rdiff);
119 dtmp = ldot * omega / PI;
120 scalecolor(ctmp, dtmp);
121 addcolor(cval, ctmp);
122 } else {
123 /*
124 * Diffuse transmitted component.
125 */
126 copycolor(ctmp, np->tdiff);
127 dtmp = -ldot * omega / PI;
128 scalecolor(ctmp, dtmp);
129 addcolor(cval, ctmp);
130 }
131 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
132 return; /* no specular component */
133 /* set up function */
134 setbrdfunc(np);
135 sa = np->mp->oargs.sarg;
136 errno = 0;
137 /* transform light vector */
138 multv3(ldx, ldir, funcxf.xfm);
139 for (i = 0; i < 3; i++)
140 lddx[i] = ldx[i]/funcxf.sca;
141 lddx[3] = omega;
142 /* compute BRTDF */
143 if (np->mp->otype == MAT_BRTDF) {
144 if (sa[6][0] == '0') /* special case */
145 colval(ctmp,RED) = 0.0;
146 else
147 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
148 if (!strcmp(sa[7],sa[6]))
149 colval(ctmp,GRN) = colval(ctmp,RED);
150 else
151 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
152 if (!strcmp(sa[8],sa[6]))
153 colval(ctmp,BLU) = colval(ctmp,RED);
154 else if (!strcmp(sa[8],sa[7]))
155 colval(ctmp,BLU) = colval(ctmp,GRN);
156 else
157 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
158 dtmp = bright(ctmp);
159 } else if (np->dp == NULL) {
160 dtmp = funvalue(sa[0], 4, lddx);
161 setcolor(ctmp, dtmp, dtmp, dtmp);
162 } else {
163 for (i = 0; i < np->dp->nd; i++)
164 pt[i] = funvalue(sa[3+i], 4, lddx);
165 vldx[0] = datavalue(np->dp, pt);
166 dtmp = funvalue(sa[0], 5, vldx);
167 setcolor(ctmp, dtmp, dtmp, dtmp);
168 }
169 if (errno == EDOM || errno == ERANGE) {
170 objerror(np->mp, WARNING, "compute error");
171 return;
172 }
173 if (dtmp <= FTINY)
174 return;
175 if (ldot > 0.0) {
176 /*
177 * Compute reflected non-diffuse component.
178 */
179 if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
180 multcolor(ctmp, np->mcolor);
181 dtmp = ldot * omega * np->rspec;
182 scalecolor(ctmp, dtmp);
183 addcolor(cval, ctmp);
184 } else {
185 /*
186 * Compute transmitted non-diffuse component.
187 */
188 if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
189 multcolor(ctmp, np->mcolor);
190 dtmp = -ldot * omega * np->tspec;
191 scalecolor(ctmp, dtmp);
192 addcolor(cval, ctmp);
193 }
194 #undef lddx
195 }
196
197
198 extern int
199 m_brdf( /* color a ray that hit a BRDTfunc material */
200 register OBJREC *m,
201 register RAY *r
202 )
203 {
204 int hitfront = 1;
205 BRDFDAT nd;
206 RAY sr;
207 double mirtest=0, mirdist=0;
208 double transtest, transdist;
209 int hasrefl, hastrans;
210 int hastexture;
211 COLOR ctmp;
212 FVECT vtmp;
213 double d;
214 register MFUNC *mf;
215 register int i;
216 /* check arguments */
217 if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
218 objerror(m, USER, "bad # arguments");
219 nd.mp = m;
220 nd.pr = r;
221 /* dummy values */
222 nd.rspec = nd.tspec = 1.0;
223 nd.trans = 0.5;
224 /* diffuse reflectance */
225 if (r->rod > 0.0)
226 setcolor(nd.rdiff, m->oargs.farg[0],
227 m->oargs.farg[1],
228 m->oargs.farg[2]);
229 else
230 setcolor(nd.rdiff, m->oargs.farg[3],
231 m->oargs.farg[4],
232 m->oargs.farg[5]);
233 /* diffuse transmittance */
234 setcolor(nd.tdiff, m->oargs.farg[6],
235 m->oargs.farg[7],
236 m->oargs.farg[8]);
237 /* get modifiers */
238 raytexture(r, m->omod);
239 hastexture = DOT(r->pert,r->pert) > FTINY*FTINY;
240 if (hastexture) { /* perturb normal */
241 nd.pdot = raynormal(nd.pnorm, r);
242 } else {
243 VCOPY(nd.pnorm, r->ron);
244 nd.pdot = r->rod;
245 }
246 if (r->rod < 0.0) { /* orient perturbed values */
247 nd.pdot = -nd.pdot;
248 for (i = 0; i < 3; i++) {
249 nd.pnorm[i] = -nd.pnorm[i];
250 r->pert[i] = -r->pert[i];
251 }
252 hitfront = 0;
253 }
254 copycolor(nd.mcolor, r->pcol); /* get pattern color */
255 multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
256 multcolor(nd.tdiff, nd.mcolor);
257 hasrefl = bright(nd.rdiff) > FTINY;
258 hastrans = bright(nd.tdiff) > FTINY;
259 /* load cal file */
260 nd.dp = NULL;
261 mf = getfunc(m, 9, 0x3f, 0);
262 /* compute transmitted ray */
263 setbrdfunc(&nd);
264 errno = 0;
265 setcolor(ctmp, evalue(mf->ep[3]),
266 evalue(mf->ep[4]),
267 evalue(mf->ep[5]));
268 if (errno == EDOM || errno == ERANGE)
269 objerror(m, WARNING, "compute error");
270 else if (rayorigin(&sr, TRANS, r, ctmp) == 0) {
271 if (!(r->crtype & SHADOW) && hastexture) {
272 for (i = 0; i < 3; i++) /* perturb direction */
273 sr.rdir[i] = r->rdir[i] - .75*r->pert[i];
274 if (normalize(sr.rdir) == 0.0) {
275 objerror(m, WARNING, "illegal perturbation");
276 VCOPY(sr.rdir, r->rdir);
277 }
278 } else {
279 VCOPY(sr.rdir, r->rdir);
280 }
281 rayvalue(&sr);
282 multcolor(sr.rcol, sr.rcoef);
283 addcolor(r->rcol, sr.rcol);
284 if (!hastexture) {
285 transtest = 2.0*bright(sr.rcol);
286 transdist = r->rot + sr.rt;
287 }
288 }
289 if (r->crtype & SHADOW) /* the rest is shadow */
290 return(1);
291 /* compute reflected ray */
292 setbrdfunc(&nd);
293 errno = 0;
294 setcolor(ctmp, evalue(mf->ep[0]),
295 evalue(mf->ep[1]),
296 evalue(mf->ep[2]));
297 if (errno == EDOM || errno == ERANGE)
298 objerror(m, WARNING, "compute error");
299 else if (rayorigin(&sr, REFLECTED, r, ctmp) == 0) {
300 for (i = 0; i < 3; i++)
301 sr.rdir[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
302 rayvalue(&sr);
303 multcolor(sr.rcol, sr.rcoef);
304 addcolor(r->rcol, sr.rcol);
305 if (!hastexture && r->ro != NULL && isflat(r->ro->otype)) {
306 mirtest = 2.0*bright(sr.rcol);
307 mirdist = r->rot + sr.rt;
308 }
309 }
310 /* compute ambient */
311 if (hasrefl) {
312 if (!hitfront)
313 flipsurface(r);
314 copycolor(ctmp, nd.rdiff);
315 multambient(ctmp, r, nd.pnorm);
316 addcolor(r->rcol, ctmp); /* add to returned color */
317 if (!hitfront)
318 flipsurface(r);
319 }
320 if (hastrans) { /* from other side */
321 if (hitfront)
322 flipsurface(r);
323 vtmp[0] = -nd.pnorm[0];
324 vtmp[1] = -nd.pnorm[1];
325 vtmp[2] = -nd.pnorm[2];
326 copycolor(ctmp, nd.tdiff);
327 multambient(ctmp, r, vtmp);
328 addcolor(r->rcol, ctmp);
329 if (hitfront)
330 flipsurface(r);
331 }
332 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
333 direct(r, dirbrdf, &nd); /* add direct component */
334
335 d = bright(r->rcol); /* set effective distance */
336 if (transtest > d)
337 r->rt = transdist;
338 else if (mirtest > d)
339 r->rt = mirdist;
340
341 return(1);
342 }
343
344
345
346 extern int
347 m_brdf2( /* color a ray that hit a BRDF material */
348 register OBJREC *m,
349 register RAY *r
350 )
351 {
352 BRDFDAT nd;
353 COLOR ctmp;
354 FVECT vtmp;
355 double dtmp;
356 /* always a shadow */
357 if (r->crtype & SHADOW)
358 return(1);
359 /* check arguments */
360 if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
361 ((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
362 objerror(m, USER, "bad # arguments");
363 /* check for back side */
364 if (r->rod < 0.0) {
365 if (!backvis && m->otype != MAT_TFUNC
366 && m->otype != MAT_TDATA) {
367 raytrans(r);
368 return(1);
369 }
370 raytexture(r, m->omod);
371 flipsurface(r); /* reorient if backvis */
372 } else
373 raytexture(r, m->omod);
374
375 nd.mp = m;
376 nd.pr = r;
377 /* get material color */
378 setcolor(nd.mcolor, m->oargs.farg[0],
379 m->oargs.farg[1],
380 m->oargs.farg[2]);
381 /* get specular component */
382 nd.rspec = m->oargs.farg[3];
383 /* compute transmittance */
384 if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
385 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
386 nd.tspec = nd.trans * m->oargs.farg[5];
387 dtmp = nd.trans - nd.tspec;
388 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
389 } else {
390 nd.tspec = nd.trans = 0.0;
391 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
392 }
393 /* compute reflectance */
394 dtmp = 1.0 - nd.trans - nd.rspec;
395 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
396 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
397 multcolor(nd.mcolor, r->pcol); /* modify material color */
398 multcolor(nd.rdiff, nd.mcolor);
399 multcolor(nd.tdiff, nd.mcolor);
400 /* load auxiliary files */
401 if (hasdata(m->otype)) {
402 nd.dp = getdata(m->oargs.sarg[1]);
403 getfunc(m, 2, 0, 0);
404 } else {
405 nd.dp = NULL;
406 getfunc(m, 1, 0, 0);
407 }
408 /* compute ambient */
409 if (nd.trans < 1.0-FTINY) {
410 copycolor(ctmp, nd.mcolor); /* modified by material color */
411 scalecolor(ctmp, 1.0-nd.trans);
412 multambient(ctmp, r, nd.pnorm);
413 addcolor(r->rcol, ctmp); /* add to returned color */
414 }
415 if (nd.trans > FTINY) { /* from other side */
416 flipsurface(r);
417 vtmp[0] = -nd.pnorm[0];
418 vtmp[1] = -nd.pnorm[1];
419 vtmp[2] = -nd.pnorm[2];
420 copycolor(ctmp, nd.mcolor);
421 scalecolor(ctmp, nd.trans);
422 multambient(ctmp, r, vtmp);
423 addcolor(r->rcol, ctmp);
424 flipsurface(r);
425 }
426 /* add direct component */
427 direct(r, dirbrdf, &nd);
428
429 return(1);
430 }
431
432
433 static int
434 setbrdfunc( /* set up brdf function and variables */
435 register BRDFDAT *np
436 )
437 {
438 FVECT vec;
439
440 if (setfunc(np->mp, np->pr) == 0)
441 return(0); /* it's OK, setfunc says we're done */
442 /* else (re)assign special variables */
443 multv3(vec, np->pnorm, funcxf.xfm);
444 varset("NxP", '=', vec[0]/funcxf.sca);
445 varset("NyP", '=', vec[1]/funcxf.sca);
446 varset("NzP", '=', vec[2]/funcxf.sca);
447 varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 :
448 np->pdot >= 1.0 ? 1.0 : np->pdot);
449 varset("CrP", '=', colval(np->mcolor,RED));
450 varset("CgP", '=', colval(np->mcolor,GRN));
451 varset("CbP", '=', colval(np->mcolor,BLU));
452 return(1);
453 }