/* Copyright (c) 1991 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Shading for materials with arbitrary BRDF's */ #include "ray.h" #include "data.h" #include "otypes.h" #include "func.h" /* * Arguments to this material include the color and specularity. * String arguments include the reflection function and files. * The BRDF is currently used just for the specular component to light * sources. Reflectance values or data coordinates are functions * of the direction to the light source. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * * Arguments for MAT_PFUNC and MAT_MFUNC are: * 2+ func funcfile transform * 0 * 4+ red grn blu specularity A5 .. * * Arguments for MAT_PDATA and MAT_MDATA are: * 4+ func datafile funcfile v0 .. transform * 0 * 4+ red grn blu specularity A5 .. * * Arguments for MAT_TFUNC are: * 2+ func funcfile transform * 0 * 4+ red grn blu rspec trans tspec A7 .. * * Arguments for MAT_TDATA are: * 4+ func datafile funcfile v0 .. transform * 0 * 4+ red grn blu rspec trans tspec A7 .. * * Arguments for the more general MAT_BRTDF are: * 10+ rrefl grefl brefl * rtrns gtrns btrns * rbrtd gbrtd bbrtd * funcfile transform * 0 * 6+ red grn blu rspec trans tspec A7 .. * * In addition to the normal variables available to functions, * we define the following: * NxP, NyP, NzP - perturbed surface normal * RdotP - perturbed ray dot product * CrP, CgP, CbP - perturbed material color */ typedef struct { OBJREC *mp; /* material pointer */ RAY *pr; /* intersected ray */ DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */ COLOR mcolor; /* color of this material */ double rspec; /* specular reflection */ double rdiff; /* diffuse reflection */ double trans; /* transmissivity */ double tspec; /* specular transmission */ double tdiff; /* diffuse transmission */ FVECT pnorm; /* perturbed surface normal */ double pdot; /* perturbed dot product */ } BRDFDAT; /* BRDF material data */ dirbrdf(cval, np, ldir, omega) /* compute source contribution */ COLOR cval; /* returned coefficient */ register BRDFDAT *np; /* material data */ FVECT ldir; /* light source direction */ double omega; /* light source size */ { double ldot; double dtmp; COLOR ctmp; FVECT ldx; double pt[MAXDIM]; register char **sa; register int i; setcolor(cval, 0.0, 0.0, 0.0); ldot = DOT(np->pnorm, ldir); if (ldot <= FTINY && ldot >= -FTINY) return; /* too close to grazing */ if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) return; /* wrong side */ if (ldot > 0.0 && np->rdiff > FTINY) { /* * Compute and add diffuse reflected component to returned * color. The diffuse reflected component will always be * modified by the color of the material. */ copycolor(ctmp, np->mcolor); dtmp = ldot * omega * np->rdiff / PI; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot < 0.0 && np->tdiff > FTINY) { /* * Diffuse transmitted component. */ copycolor(ctmp, np->mcolor); dtmp = -ldot * omega * np->tdiff / PI; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY) return; /* no specular component */ /* set up function */ setbrdfunc(np); sa = np->mp->oargs.sarg; errno = 0; /* transform light vector */ multv3(ldx, ldir, funcxf.xfm); for (i = 0; i < 3; i++) ldx[i] /= funcxf.sca; /* compute BRTDF */ if (np->mp->otype == MAT_BRTDF) { colval(ctmp,RED) = funvalue(sa[6], 3, ldx); if (!strcmp(sa[7],sa[6])) colval(ctmp,GRN) = colval(ctmp,RED); else colval(ctmp,GRN) = funvalue(sa[7], 3, ldx); if (!strcmp(sa[8],sa[6])) colval(ctmp,BLU) = colval(ctmp,RED); else if (!strcmp(sa[8],sa[7])) colval(ctmp,BLU) = colval(ctmp,GRN); else colval(ctmp,BLU) = funvalue(sa[8], 3, ldx); dtmp = bright(ctmp); } else if (np->dp == NULL) { dtmp = funvalue(sa[0], 3, ldx); setcolor(ctmp, dtmp, dtmp, dtmp); } else { for (i = 0; i < np->dp->nd; i++) pt[i] = funvalue(sa[3+i], 3, ldx); dtmp = datavalue(np->dp, pt); dtmp = funvalue(sa[0], 1, &dtmp); setcolor(ctmp, dtmp, dtmp, dtmp); } if (errno) { objerror(np->mp, WARNING, "compute error"); return; } if (dtmp <= FTINY) return; if (ldot > 0.0) { /* * Compute reflected non-diffuse component. */ if (np->mp->otype == MAT_MFUNC || np->mp->otype == MAT_MDATA) multcolor(ctmp, np->mcolor); dtmp = ldot * omega * np->rspec; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } else { /* * Compute transmitted non-diffuse component. */ if (np->mp->otype == MAT_TFUNC || np->mp->otype == MAT_TDATA) multcolor(ctmp, np->mcolor); dtmp = -ldot * omega * np->tspec; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } } m_brdf(m, r) /* color a ray which hit a BRDF material */ register OBJREC *m; register RAY *r; { int minsa, minfa; BRDFDAT nd; double transtest, transdist; COLOR ctmp; double dtmp, tspect, rspecr; MFUNC *mf; register int i; /* check arguments */ switch (m->otype) { case MAT_PFUNC: case MAT_MFUNC: minsa = 2; minfa = 4; break; case MAT_PDATA: case MAT_MDATA: minsa = 4; minfa = 4; break; case MAT_TFUNC: minsa = 2; minfa = 6; break; case MAT_TDATA: minsa = 4; minfa = 6; break; case MAT_BRTDF: minsa = 10; minfa = 6; break; } if (m->oargs.nsargs < minsa || m->oargs.nfargs < minfa) objerror(m, USER, "bad # arguments"); nd.mp = m; nd.pr = r; /* get specular component */ nd.rspec = m->oargs.farg[3]; /* compute transmission */ if (m->otype == MAT_TFUNC || m->otype == MAT_TDATA || m->otype == MAT_BRTDF) { nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec); nd.tspec = nd.trans * m->oargs.farg[5]; nd.tdiff = nd.trans - nd.tspec; } else nd.tdiff = nd.tspec = nd.trans = 0.0; /* early shadow check */ if (r->crtype & SHADOW && (m->otype != MAT_BRTDF || nd.tspec <= FTINY)) return; /* diffuse reflection */ nd.rdiff = 1.0 - nd.trans - nd.rspec; /* get material color */ setcolor(nd.mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); /* fix orientation */ if (r->rod < 0.0) flipsurface(r); /* get modifiers */ raytexture(r, m->omod); nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ multcolor(nd.mcolor, r->pcol); /* modify material color */ transtest = 0; /* load auxiliary files */ if (hasdata(m->otype)) { nd.dp = getdata(m->oargs.sarg[1]); i = (1 << nd.dp->nd) - 1; mf = getfunc(m, 2, i<<3, 0); } else if (m->otype == MAT_BRTDF) { nd.dp = NULL; mf = getfunc(m, 9, 0x3f, 0); } else { nd.dp = NULL; mf = getfunc(m, 1, 0, 0); } /* set special variables */ setbrdfunc(&nd); /* compute transmitted ray */ tspect = 0.; if (m->otype == MAT_BRTDF && nd.tspec > FTINY) { RAY sr; errno = 0; setcolor(ctmp, evalue(mf->ep[3]), evalue(mf->ep[4]), evalue(mf->ep[5])); scalecolor(ctmp, nd.trans); if (errno) objerror(m, WARNING, "compute error"); else if ((tspect = bright(ctmp)) > FTINY && rayorigin(&sr, r, TRANS, tspect) == 0) { if (!(r->crtype & SHADOW) && DOT(r->pert,r->pert) > FTINY*FTINY) { for (i = 0; i < 3; i++) /* perturb direction */ sr.rdir[i] = r->rdir[i] - .75*r->pert[i]; normalize(sr.rdir); } else { VCOPY(sr.rdir, r->rdir); transtest = 2; } rayvalue(&sr); multcolor(sr.rcol, ctmp); addcolor(r->rcol, sr.rcol); transtest *= bright(sr.rcol); transdist = r->rot + sr.rt; } } if (r->crtype & SHADOW) /* the rest is shadow */ return; /* compute reflected ray */ rspecr = 0.; if (m->otype == MAT_BRTDF && nd.rspec > FTINY) { RAY sr; errno = 0; setcolor(ctmp, evalue(mf->ep[0]), evalue(mf->ep[1]), evalue(mf->ep[2])); if (errno) objerror(m, WARNING, "compute error"); else if ((rspecr = bright(ctmp)) > FTINY && rayorigin(&sr, r, REFLECTED, rspecr) == 0) { for (i = 0; i < 3; i++) sr.rdir[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; rayvalue(&sr); multcolor(sr.rcol, ctmp); addcolor(r->rcol, sr.rcol); } } /* compute ambient */ if ((dtmp = 1.0-nd.trans-rspecr) > FTINY) { ambient(ctmp, r); scalecolor(ctmp, dtmp); multcolor(ctmp, nd.mcolor); /* modified by material color */ addcolor(r->rcol, ctmp); /* add to returned color */ } if ((dtmp = nd.trans-tspect) > FTINY) { /* from other side */ flipsurface(r); ambient(ctmp, r); scalecolor(ctmp, dtmp); multcolor(ctmp, nd.mcolor); addcolor(r->rcol, ctmp); flipsurface(r); } /* add direct component */ direct(r, dirbrdf, &nd); /* check distance */ if (transtest > bright(r->rcol)) r->rt = transdist; } setbrdfunc(np) /* set up brdf function and variables */ register BRDFDAT *np; { FVECT vec; if (setfunc(np->mp, np->pr) == 0) return(0); /* it's OK, setfunc says we're done */ /* else (re)assign special variables */ multv3(vec, np->pnorm, funcxf.xfm); varset("NxP", '=', vec[0]/funcxf.sca); varset("NyP", '=', vec[1]/funcxf.sca); varset("NzP", '=', vec[2]/funcxf.sca); varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 : np->pdot >= 1.0 ? 1.0 : np->pdot); varset("CrP", '=', colval(np->mcolor,RED)); varset("CgP", '=', colval(np->mcolor,GRN)); varset("CbP", '=', colval(np->mcolor,BLU)); return(1); }