ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.17
Committed: Mon Mar 3 00:10:51 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.16: +13 -12 lines
Log Message:
Changed call order for proper function of two-sided, textured surfaces

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * Shading for materials with arbitrary BRDF's
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11
12 #include "data.h"
13
14 #include "otypes.h"
15
16 #include "func.h"
17
18 /*
19 * Arguments to this material include the color and specularity.
20 * String arguments include the reflection function and files.
21 * The BRDF is currently used just for the specular component to light
22 * sources. Reflectance values or data coordinates are functions
23 * of the direction to the light source. (Data modification functions
24 * are passed the source direction as args 2-4.)
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PFUNC and MAT_MFUNC are:
29 * 2+ func funcfile transform
30 * 0
31 * 4+ red grn blu specularity A5 ..
32 *
33 * Arguments for MAT_PDATA and MAT_MDATA are:
34 * 4+ func datafile funcfile v0 .. transform
35 * 0
36 * 4+ red grn blu specularity A5 ..
37 *
38 * Arguments for MAT_TFUNC are:
39 * 2+ func funcfile transform
40 * 0
41 * 4+ red grn blu rspec trans tspec A7 ..
42 *
43 * Arguments for MAT_TDATA are:
44 * 4+ func datafile funcfile v0 .. transform
45 * 0
46 * 4+ red grn blu rspec trans tspec A7 ..
47 *
48 * Arguments for the more general MAT_BRTDF are:
49 * 10+ rrefl grefl brefl
50 * rtrns gtrns btrns
51 * rbrtd gbrtd bbrtd
52 * funcfile transform
53 * 0
54 * 9+ rdf gdf bdf
55 * rdb gdb bdb
56 * rdt gdt bdt A10 ..
57 *
58 * In addition to the normal variables available to functions,
59 * we define the following:
60 * NxP, NyP, NzP - perturbed surface normal
61 * RdotP - perturbed ray dot product
62 * CrP, CgP, CbP - perturbed material color (or pattern)
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
69 COLOR mcolor; /* material (or pattern) color */
70 COLOR rdiff; /* diffuse reflection */
71 COLOR tdiff; /* diffuse transmission */
72 double rspec; /* specular reflectance (1 for BRDTF) */
73 double trans; /* transmissivity (.5 for BRDTF) */
74 double tspec; /* specular transmittance (1 for BRDTF) */
75 FVECT pnorm; /* perturbed surface normal */
76 double pdot; /* perturbed dot product */
77 } BRDFDAT; /* BRDF material data */
78
79
80 static void
81 dirbrdf(cval, np, ldir, omega) /* compute source contribution */
82 COLOR cval; /* returned coefficient */
83 register BRDFDAT *np; /* material data */
84 FVECT ldir; /* light source direction */
85 double omega; /* light source size */
86 {
87 double ldot;
88 double dtmp;
89 COLOR ctmp;
90 FVECT ldx;
91 static double vldx[5], pt[MAXDIM];
92 register char **sa;
93 register int i;
94 #define lddx (vldx+1)
95
96 setcolor(cval, 0.0, 0.0, 0.0);
97
98 ldot = DOT(np->pnorm, ldir);
99
100 if (ldot <= FTINY && ldot >= -FTINY)
101 return; /* too close to grazing */
102
103 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
104 return; /* wrong side */
105
106 if (ldot > 0.0) {
107 /*
108 * Compute and add diffuse reflected component to returned
109 * color. The diffuse reflected component will always be
110 * modified by the color of the material.
111 */
112 copycolor(ctmp, np->rdiff);
113 dtmp = ldot * omega / PI;
114 scalecolor(ctmp, dtmp);
115 addcolor(cval, ctmp);
116 } else {
117 /*
118 * Diffuse transmitted component.
119 */
120 copycolor(ctmp, np->tdiff);
121 dtmp = -ldot * omega / PI;
122 scalecolor(ctmp, dtmp);
123 addcolor(cval, ctmp);
124 }
125 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
126 return; /* no specular component */
127 /* set up function */
128 setbrdfunc(np);
129 sa = np->mp->oargs.sarg;
130 errno = 0;
131 /* transform light vector */
132 multv3(ldx, ldir, funcxf.xfm);
133 for (i = 0; i < 3; i++)
134 lddx[i] = ldx[i]/funcxf.sca;
135 lddx[3] = omega;
136 /* compute BRTDF */
137 if (np->mp->otype == MAT_BRTDF) {
138 if (sa[6][0] == '0') /* special case */
139 colval(ctmp,RED) = 0.0;
140 else
141 colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
142 if (!strcmp(sa[7],sa[6]))
143 colval(ctmp,GRN) = colval(ctmp,RED);
144 else
145 colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
146 if (!strcmp(sa[8],sa[6]))
147 colval(ctmp,BLU) = colval(ctmp,RED);
148 else if (!strcmp(sa[8],sa[7]))
149 colval(ctmp,BLU) = colval(ctmp,GRN);
150 else
151 colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
152 dtmp = bright(ctmp);
153 } else if (np->dp == NULL) {
154 dtmp = funvalue(sa[0], 4, lddx);
155 setcolor(ctmp, dtmp, dtmp, dtmp);
156 } else {
157 for (i = 0; i < np->dp->nd; i++)
158 pt[i] = funvalue(sa[3+i], 4, lddx);
159 vldx[0] = datavalue(np->dp, pt);
160 dtmp = funvalue(sa[0], 5, vldx);
161 setcolor(ctmp, dtmp, dtmp, dtmp);
162 }
163 if (errno) {
164 objerror(np->mp, WARNING, "compute error");
165 return;
166 }
167 if (dtmp <= FTINY)
168 return;
169 if (ldot > 0.0) {
170 /*
171 * Compute reflected non-diffuse component.
172 */
173 if (np->mp->otype == MAT_MFUNC | np->mp->otype == MAT_MDATA)
174 multcolor(ctmp, np->mcolor);
175 dtmp = ldot * omega * np->rspec;
176 scalecolor(ctmp, dtmp);
177 addcolor(cval, ctmp);
178 } else {
179 /*
180 * Compute transmitted non-diffuse component.
181 */
182 if (np->mp->otype == MAT_TFUNC | np->mp->otype == MAT_TDATA)
183 multcolor(ctmp, np->mcolor);
184 dtmp = -ldot * omega * np->tspec;
185 scalecolor(ctmp, dtmp);
186 addcolor(cval, ctmp);
187 }
188 #undef lddx
189 }
190
191
192 int
193 m_brdf(m, r) /* color a ray that hit a BRDTfunc material */
194 register OBJREC *m;
195 register RAY *r;
196 {
197 int hitfront = 1;
198 BRDFDAT nd;
199 RAY sr;
200 double transtest, transdist;
201 int hasrefl, hastrans;
202 COLOR ctmp;
203 FVECT vtmp;
204 register MFUNC *mf;
205 register int i;
206 /* check arguments */
207 if (m->oargs.nsargs < 10 | m->oargs.nfargs < 9)
208 objerror(m, USER, "bad # arguments");
209 nd.mp = m;
210 nd.pr = r;
211 /* dummy values */
212 nd.rspec = nd.tspec = 1.0;
213 nd.trans = 0.5;
214 /* diffuse reflectance */
215 if (r->rod > 0.0)
216 setcolor(nd.rdiff, m->oargs.farg[0],
217 m->oargs.farg[1],
218 m->oargs.farg[2]);
219 else
220 setcolor(nd.rdiff, m->oargs.farg[3],
221 m->oargs.farg[4],
222 m->oargs.farg[5]);
223 /* diffuse transmittance */
224 setcolor(nd.tdiff, m->oargs.farg[6],
225 m->oargs.farg[7],
226 m->oargs.farg[8]);
227 /* get modifiers */
228 raytexture(r, m->omod);
229 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
230 if (r->rod < 0.0) { /* orient perturbed values */
231 nd.pdot = -nd.pdot;
232 for (i = 0; i < 3; i++) {
233 nd.pnorm[i] = -nd.pnorm[i];
234 r->pert[i] = -r->pert[i];
235 }
236 hitfront = 0;
237 }
238 copycolor(nd.mcolor, r->pcol); /* get pattern color */
239 multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
240 multcolor(nd.tdiff, nd.mcolor);
241 hasrefl = bright(nd.rdiff) > FTINY;
242 hastrans = bright(nd.tdiff) > FTINY;
243 /* load cal file */
244 nd.dp = NULL;
245 mf = getfunc(m, 9, 0x3f, 0);
246 /* compute transmitted ray */
247 setbrdfunc(&nd);
248 transtest = 0;
249 transdist = r->rot;
250 errno = 0;
251 setcolor(ctmp, evalue(mf->ep[3]),
252 evalue(mf->ep[4]),
253 evalue(mf->ep[5]));
254 if (errno)
255 objerror(m, WARNING, "compute error");
256 else if (rayorigin(&sr, r, TRANS, bright(ctmp)) == 0) {
257 if (!(r->crtype & SHADOW) &&
258 DOT(r->pert,r->pert) > FTINY*FTINY) {
259 for (i = 0; i < 3; i++) /* perturb direction */
260 sr.rdir[i] = r->rdir[i] - .75*r->pert[i];
261 if (normalize(sr.rdir) == 0.0) {
262 objerror(m, WARNING, "illegal perturbation");
263 VCOPY(sr.rdir, r->rdir);
264 }
265 } else {
266 VCOPY(sr.rdir, r->rdir);
267 transtest = 2;
268 }
269 rayvalue(&sr);
270 multcolor(sr.rcol, ctmp);
271 addcolor(r->rcol, sr.rcol);
272 transtest *= bright(sr.rcol);
273 transdist = r->rot + sr.rt;
274 }
275 if (r->crtype & SHADOW) /* the rest is shadow */
276 return(1);
277 /* compute reflected ray */
278 setbrdfunc(&nd);
279 errno = 0;
280 setcolor(ctmp, evalue(mf->ep[0]),
281 evalue(mf->ep[1]),
282 evalue(mf->ep[2]));
283 if (errno)
284 objerror(m, WARNING, "compute error");
285 else if (rayorigin(&sr, r, REFLECTED, bright(ctmp)) == 0) {
286 for (i = 0; i < 3; i++)
287 sr.rdir[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
288 rayvalue(&sr);
289 multcolor(sr.rcol, ctmp);
290 addcolor(r->rcol, sr.rcol);
291 }
292 /* compute ambient */
293 if (hasrefl) {
294 if (!hitfront)
295 flipsurface(r);
296 ambient(ctmp, r, nd.pnorm);
297 multcolor(ctmp, nd.rdiff);
298 addcolor(r->rcol, ctmp); /* add to returned color */
299 if (!hitfront)
300 flipsurface(r);
301 }
302 if (hastrans) { /* from other side */
303 if (hitfront)
304 flipsurface(r);
305 vtmp[0] = -nd.pnorm[0];
306 vtmp[1] = -nd.pnorm[1];
307 vtmp[2] = -nd.pnorm[2];
308 ambient(ctmp, r, vtmp);
309 multcolor(ctmp, nd.tdiff);
310 addcolor(r->rcol, ctmp);
311 if (hitfront)
312 flipsurface(r);
313 }
314 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
315 direct(r, dirbrdf, &nd); /* add direct component */
316 /* check distance */
317 if (transtest > bright(r->rcol))
318 r->rt = transdist;
319
320 return(1);
321 }
322
323
324
325 int
326 m_brdf2(m, r) /* color a ray that hit a BRDF material */
327 register OBJREC *m;
328 register RAY *r;
329 {
330 BRDFDAT nd;
331 COLOR ctmp;
332 FVECT vtmp;
333 double dtmp;
334 /* always a shadow */
335 if (r->crtype & SHADOW)
336 return(1);
337 /* check arguments */
338 if (m->oargs.nsargs < (hasdata(m->otype)?4:2) | m->oargs.nfargs <
339 (m->otype==MAT_TFUNC|m->otype==MAT_TDATA?6:4))
340 objerror(m, USER, "bad # arguments");
341 /* check for back side */
342 if (r->rod < 0.0) {
343 if (!backvis && m->otype != MAT_TFUNC
344 && m->otype != MAT_TDATA) {
345 raytrans(r);
346 return(1);
347 }
348 raytexture(r, m->omod);
349 flipsurface(r); /* reorient if backvis */
350 } else
351 raytexture(r, m->omod);
352
353 nd.mp = m;
354 nd.pr = r;
355 /* get material color */
356 setcolor(nd.mcolor, m->oargs.farg[0],
357 m->oargs.farg[1],
358 m->oargs.farg[2]);
359 /* get specular component */
360 nd.rspec = m->oargs.farg[3];
361 /* compute transmittance */
362 if (m->otype == MAT_TFUNC | m->otype == MAT_TDATA) {
363 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
364 nd.tspec = nd.trans * m->oargs.farg[5];
365 dtmp = nd.trans - nd.tspec;
366 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
367 } else {
368 nd.tspec = nd.trans = 0.0;
369 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
370 }
371 /* compute reflectance */
372 dtmp = 1.0 - nd.trans - nd.rspec;
373 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
374 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
375 multcolor(nd.mcolor, r->pcol); /* modify material color */
376 multcolor(nd.rdiff, nd.mcolor);
377 multcolor(nd.tdiff, nd.mcolor);
378 /* load auxiliary files */
379 if (hasdata(m->otype)) {
380 nd.dp = getdata(m->oargs.sarg[1]);
381 getfunc(m, 2, 0, 0);
382 } else {
383 nd.dp = NULL;
384 getfunc(m, 1, 0, 0);
385 }
386 /* compute ambient */
387 if (nd.trans < 1.0-FTINY) {
388 ambient(ctmp, r, nd.pnorm);
389 scalecolor(ctmp, 1.0-nd.trans);
390 multcolor(ctmp, nd.mcolor); /* modified by material color */
391 addcolor(r->rcol, ctmp); /* add to returned color */
392 }
393 if (nd.trans > FTINY) { /* from other side */
394 flipsurface(r);
395 vtmp[0] = -nd.pnorm[0];
396 vtmp[1] = -nd.pnorm[1];
397 vtmp[2] = -nd.pnorm[2];
398 ambient(ctmp, r, vtmp);
399 scalecolor(ctmp, nd.trans);
400 multcolor(ctmp, nd.mcolor);
401 addcolor(r->rcol, ctmp);
402 flipsurface(r);
403 }
404 /* add direct component */
405 direct(r, dirbrdf, &nd);
406
407 return(1);
408 }
409
410
411 int
412 setbrdfunc(np) /* set up brdf function and variables */
413 register BRDFDAT *np;
414 {
415 FVECT vec;
416
417 if (setfunc(np->mp, np->pr) == 0)
418 return(0); /* it's OK, setfunc says we're done */
419 /* else (re)assign special variables */
420 multv3(vec, np->pnorm, funcxf.xfm);
421 varset("NxP", '=', vec[0]/funcxf.sca);
422 varset("NyP", '=', vec[1]/funcxf.sca);
423 varset("NzP", '=', vec[2]/funcxf.sca);
424 varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 :
425 np->pdot >= 1.0 ? 1.0 : np->pdot);
426 varset("CrP", '=', colval(np->mcolor,RED));
427 varset("CgP", '=', colval(np->mcolor,GRN));
428 varset("CbP", '=', colval(np->mcolor,BLU));
429 return(1);
430 }