/* Copyright (c) 1991 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Shading for materials with arbitrary BRDF's */ #include "ray.h" #include "data.h" #include "otypes.h" #include "func.h" extern int backvis; /* back faces visible? */ /* * Arguments to this material include the color and specularity. * String arguments include the reflection function and files. * The BRDF is currently used just for the specular component to light * sources. Reflectance values or data coordinates are functions * of the direction to the light source. (Data modification functions * are passed the source direction as args 2-4.) * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * * Arguments for MAT_PFUNC and MAT_MFUNC are: * 2+ func funcfile transform * 0 * 4+ red grn blu specularity A5 .. * * Arguments for MAT_PDATA and MAT_MDATA are: * 4+ func datafile funcfile v0 .. transform * 0 * 4+ red grn blu specularity A5 .. * * Arguments for MAT_TFUNC are: * 2+ func funcfile transform * 0 * 4+ red grn blu rspec trans tspec A7 .. * * Arguments for MAT_TDATA are: * 4+ func datafile funcfile v0 .. transform * 0 * 4+ red grn blu rspec trans tspec A7 .. * * Arguments for the more general MAT_BRTDF are: * 10+ rrefl grefl brefl * rtrns gtrns btrns * rbrtd gbrtd bbrtd * funcfile transform * 0 * 9+ rdf gdf bdf * rdb gdb bdb * rdt gdt bdt A10 .. * * In addition to the normal variables available to functions, * we define the following: * NxP, NyP, NzP - perturbed surface normal * RdotP - perturbed ray dot product * CrP, CgP, CbP - perturbed material color (or pattern) */ typedef struct { OBJREC *mp; /* material pointer */ RAY *pr; /* intersected ray */ DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */ COLOR mcolor; /* material (or pattern) color */ COLOR rdiff; /* diffuse reflection */ COLOR tdiff; /* diffuse transmission */ double rspec; /* specular reflectance (1 for BRDTF) */ double trans; /* transmissivity (.5 for BRDTF) */ double tspec; /* specular transmittance (1 for BRDTF) */ FVECT pnorm; /* perturbed surface normal */ double pdot; /* perturbed dot product */ } BRDFDAT; /* BRDF material data */ dirbrdf(cval, np, ldir, omega) /* compute source contribution */ COLOR cval; /* returned coefficient */ register BRDFDAT *np; /* material data */ FVECT ldir; /* light source direction */ double omega; /* light source size */ { double ldot; double dtmp; COLOR ctmp; FVECT ldx; static double vldx[5], pt[MAXDIM]; register char **sa; register int i; #define lddx (vldx+1) setcolor(cval, 0.0, 0.0, 0.0); ldot = DOT(np->pnorm, ldir); if (ldot <= FTINY && ldot >= -FTINY) return; /* too close to grazing */ if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) return; /* wrong side */ if (ldot > 0.0) { /* * Compute and add diffuse reflected component to returned * color. The diffuse reflected component will always be * modified by the color of the material. */ copycolor(ctmp, np->rdiff); dtmp = ldot * omega / PI; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } else { /* * Diffuse transmitted component. */ copycolor(ctmp, np->tdiff); dtmp = -ldot * omega / PI; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY) return; /* no specular component */ /* set up function */ setbrdfunc(np); sa = np->mp->oargs.sarg; errno = 0; /* transform light vector */ multv3(ldx, ldir, funcxf.xfm); for (i = 0; i < 3; i++) lddx[i] = ldx[i]/funcxf.sca; lddx[3] = omega; /* compute BRTDF */ if (np->mp->otype == MAT_BRTDF) { if (sa[6][0] == '0') /* special case */ colval(ctmp,RED) = 0.0; else colval(ctmp,RED) = funvalue(sa[6], 4, lddx); if (!strcmp(sa[7],sa[6])) colval(ctmp,GRN) = colval(ctmp,RED); else colval(ctmp,GRN) = funvalue(sa[7], 4, lddx); if (!strcmp(sa[8],sa[6])) colval(ctmp,BLU) = colval(ctmp,RED); else if (!strcmp(sa[8],sa[7])) colval(ctmp,BLU) = colval(ctmp,GRN); else colval(ctmp,BLU) = funvalue(sa[8], 4, lddx); dtmp = bright(ctmp); } else if (np->dp == NULL) { dtmp = funvalue(sa[0], 4, lddx); setcolor(ctmp, dtmp, dtmp, dtmp); } else { for (i = 0; i < np->dp->nd; i++) pt[i] = funvalue(sa[3+i], 4, lddx); vldx[0] = datavalue(np->dp, pt); dtmp = funvalue(sa[0], 5, vldx); setcolor(ctmp, dtmp, dtmp, dtmp); } if (errno) { objerror(np->mp, WARNING, "compute error"); return; } if (dtmp <= FTINY) return; if (ldot > 0.0) { /* * Compute reflected non-diffuse component. */ if (np->mp->otype == MAT_MFUNC | np->mp->otype == MAT_MDATA) multcolor(ctmp, np->mcolor); dtmp = ldot * omega * np->rspec; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } else { /* * Compute transmitted non-diffuse component. */ if (np->mp->otype == MAT_TFUNC | np->mp->otype == MAT_TDATA) multcolor(ctmp, np->mcolor); dtmp = -ldot * omega * np->tspec; scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } #undef lddx } m_brdf(m, r) /* color a ray which hit a BRDTfunc material */ register OBJREC *m; register RAY *r; { BRDFDAT nd; RAY sr; double transtest, transdist; int hasrefl, hastrans; COLOR ctmp; FVECT vtmp; register MFUNC *mf; register int i; /* check arguments */ if (m->oargs.nsargs < 10 | m->oargs.nfargs < 9) objerror(m, USER, "bad # arguments"); nd.mp = m; nd.pr = r; /* dummy values */ nd.rspec = nd.tspec = 1.0; nd.trans = 0.5; /* diffuse reflectance */ if (r->rod > 0.0) setcolor(nd.rdiff, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); else setcolor(nd.rdiff, m->oargs.farg[3], m->oargs.farg[4], m->oargs.farg[5]); /* diffuse transmittance */ setcolor(nd.tdiff, m->oargs.farg[6], m->oargs.farg[7], m->oargs.farg[8]); /* get modifiers */ raytexture(r, m->omod); nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ if (r->rod < 0.0) { /* orient perturbed values */ nd.pdot = -nd.pdot; for (i = 0; i < 3; i++) { nd.pnorm[i] = -nd.pnorm[i]; r->pert[i] = -r->pert[i]; } } copycolor(nd.mcolor, r->pcol); /* get pattern color */ multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */ multcolor(nd.tdiff, nd.mcolor); hasrefl = bright(nd.rdiff) > FTINY; hastrans = bright(nd.tdiff) > FTINY; /* load cal file */ nd.dp = NULL; mf = getfunc(m, 9, 0x3f, 0); /* compute transmitted ray */ setbrdfunc(&nd); transtest = 0; transdist = r->rot; errno = 0; setcolor(ctmp, evalue(mf->ep[3]), evalue(mf->ep[4]), evalue(mf->ep[5])); if (errno) objerror(m, WARNING, "compute error"); else if (rayorigin(&sr, r, TRANS, bright(ctmp)) == 0) { if (!(r->crtype & SHADOW) && DOT(r->pert,r->pert) > FTINY*FTINY) { for (i = 0; i < 3; i++) /* perturb direction */ sr.rdir[i] = r->rdir[i] - .75*r->pert[i]; if (normalize(sr.rdir) == 0.0) { objerror(m, WARNING, "illegal perturbation"); VCOPY(sr.rdir, r->rdir); } } else { VCOPY(sr.rdir, r->rdir); transtest = 2; } rayvalue(&sr); multcolor(sr.rcol, ctmp); addcolor(r->rcol, sr.rcol); transtest *= bright(sr.rcol); transdist = r->rot + sr.rt; } if (r->crtype & SHADOW) /* the rest is shadow */ return(1); /* compute reflected ray */ setbrdfunc(&nd); errno = 0; setcolor(ctmp, evalue(mf->ep[0]), evalue(mf->ep[1]), evalue(mf->ep[2])); if (errno) objerror(m, WARNING, "compute error"); else if (rayorigin(&sr, r, REFLECTED, bright(ctmp)) == 0) { for (i = 0; i < 3; i++) sr.rdir[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; rayvalue(&sr); multcolor(sr.rcol, ctmp); addcolor(r->rcol, sr.rcol); } /* compute ambient */ if (hasrefl) { if (nd.pdot < 0.0) { flipsurface(r); vtmp[0] = -nd.pnorm[0]; vtmp[1] = -nd.pnorm[1]; vtmp[2] = -nd.pnorm[2]; } else VCOPY(vtmp, nd.pnorm); ambient(ctmp, r, vtmp); multcolor(ctmp, nd.rdiff); addcolor(r->rcol, ctmp); /* add to returned color */ if (nd.pdot < 0.0) flipsurface(r); } if (hastrans) { /* from other side */ if (nd.pdot > 0.0) { flipsurface(r); vtmp[0] = -nd.pnorm[0]; vtmp[1] = -nd.pnorm[1]; vtmp[2] = -nd.pnorm[2]; } else VCOPY(vtmp, nd.pnorm); ambient(ctmp, r, vtmp); multcolor(ctmp, nd.tdiff); addcolor(r->rcol, ctmp); if (nd.pdot > 0.0) flipsurface(r); } if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0') direct(r, dirbrdf, &nd); /* add direct component */ /* check distance */ if (transtest > bright(r->rcol)) r->rt = transdist; return(1); } m_brdf2(m, r) /* color a ray which hit a BRDF material */ register OBJREC *m; register RAY *r; { BRDFDAT nd; COLOR ctmp; FVECT vtmp; double dtmp; /* always a shadow */ if (r->crtype & SHADOW) return(1); /* check arguments */ if (m->oargs.nsargs < (hasdata(m->otype)?4:2) | m->oargs.nfargs < (m->otype==MAT_TFUNC|m->otype==MAT_TDATA?6:4)) objerror(m, USER, "bad # arguments"); nd.mp = m; nd.pr = r; /* get material color */ setcolor(nd.mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); /* get specular component */ nd.rspec = m->oargs.farg[3]; /* compute transmittance */ if (m->otype == MAT_TFUNC | m->otype == MAT_TDATA) { nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec); nd.tspec = nd.trans * m->oargs.farg[5]; dtmp = nd.trans - nd.tspec; setcolor(nd.tdiff, dtmp, dtmp, dtmp); } else { nd.tspec = nd.trans = 0.0; setcolor(nd.tdiff, 0.0, 0.0, 0.0); } /* compute reflectance */ dtmp = 1.0 - nd.trans - nd.rspec; setcolor(nd.rdiff, dtmp, dtmp, dtmp); /* check for back side */ if (r->rod < 0.0) { if (!backvis && m->otype != MAT_TFUNC && m->otype != MAT_TDATA) { raytrans(r); return(1); } flipsurface(r); /* reorient if backvis */ } /* get modifiers */ raytexture(r, m->omod); nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ multcolor(nd.mcolor, r->pcol); /* modify material color */ multcolor(nd.rdiff, nd.mcolor); multcolor(nd.tdiff, nd.mcolor); /* load auxiliary files */ if (hasdata(m->otype)) { nd.dp = getdata(m->oargs.sarg[1]); getfunc(m, 2, 0, 0); } else { nd.dp = NULL; getfunc(m, 1, 0, 0); } /* compute ambient */ if (nd.trans < 1.0-FTINY) { ambient(ctmp, r, nd.pnorm); scalecolor(ctmp, 1.0-nd.trans); multcolor(ctmp, nd.mcolor); /* modified by material color */ addcolor(r->rcol, ctmp); /* add to returned color */ } if (nd.trans > FTINY) { /* from other side */ flipsurface(r); vtmp[0] = -nd.pnorm[0]; vtmp[1] = -nd.pnorm[1]; vtmp[2] = -nd.pnorm[2]; ambient(ctmp, r, vtmp); scalecolor(ctmp, nd.trans); multcolor(ctmp, nd.mcolor); addcolor(r->rcol, ctmp); flipsurface(r); } /* add direct component */ direct(r, dirbrdf, &nd); return(1); } setbrdfunc(np) /* set up brdf function and variables */ register BRDFDAT *np; { FVECT vec; if (setfunc(np->mp, np->pr) == 0) return(0); /* it's OK, setfunc says we're done */ /* else (re)assign special variables */ multv3(vec, np->pnorm, funcxf.xfm); varset("NxP", '=', vec[0]/funcxf.sca); varset("NyP", '=', vec[1]/funcxf.sca); varset("NzP", '=', vec[2]/funcxf.sca); varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 : np->pdot >= 1.0 ? 1.0 : np->pdot); varset("CrP", '=', colval(np->mcolor,RED)); varset("CgP", '=', colval(np->mcolor,GRN)); varset("CbP", '=', colval(np->mcolor,BLU)); return(1); }