ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 2.10
Committed: Wed Jan 12 16:46:35 1994 UTC (30 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +6 -2 lines
Log Message:
made mixtures work with materials

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading for materials with arbitrary BRDF's
9 */
10
11 #include "ray.h"
12
13 #include "data.h"
14
15 #include "otypes.h"
16
17 #include "func.h"
18
19 /*
20 * Arguments to this material include the color and specularity.
21 * String arguments include the reflection function and files.
22 * The BRDF is currently used just for the specular component to light
23 * sources. Reflectance values or data coordinates are functions
24 * of the direction to the light source. (Data modification functions
25 * are passed the source direction as args 2-4.)
26 * We orient the surface towards the incoming ray, so a single
27 * surface can be used to represent an infinitely thin object.
28 *
29 * Arguments for MAT_PFUNC and MAT_MFUNC are:
30 * 2+ func funcfile transform
31 * 0
32 * 4+ red grn blu specularity A5 ..
33 *
34 * Arguments for MAT_PDATA and MAT_MDATA are:
35 * 4+ func datafile funcfile v0 .. transform
36 * 0
37 * 4+ red grn blu specularity A5 ..
38 *
39 * Arguments for MAT_TFUNC are:
40 * 2+ func funcfile transform
41 * 0
42 * 4+ red grn blu rspec trans tspec A7 ..
43 *
44 * Arguments for MAT_TDATA are:
45 * 4+ func datafile funcfile v0 .. transform
46 * 0
47 * 4+ red grn blu rspec trans tspec A7 ..
48 *
49 * Arguments for the more general MAT_BRTDF are:
50 * 10+ rrefl grefl brefl
51 * rtrns gtrns btrns
52 * rbrtd gbrtd bbrtd
53 * funcfile transform
54 * 0
55 * 9+ rdf gdf bdf
56 * rdb gdb bdb
57 * rdt gdt bdt A10 ..
58 *
59 * In addition to the normal variables available to functions,
60 * we define the following:
61 * NxP, NyP, NzP - perturbed surface normal
62 * RdotP - perturbed ray dot product
63 * CrP, CgP, CbP - perturbed material color (or pattern)
64 */
65
66 typedef struct {
67 OBJREC *mp; /* material pointer */
68 RAY *pr; /* intersected ray */
69 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
70 COLOR mcolor; /* material (or pattern) color */
71 COLOR rdiff; /* diffuse reflection */
72 COLOR tdiff; /* diffuse transmission */
73 double rspec; /* specular reflectance (1 for BRDTF) */
74 double trans; /* transmissivity (.5 for BRDTF) */
75 double tspec; /* specular transmittance (1 for BRDTF) */
76 FVECT pnorm; /* perturbed surface normal */
77 double pdot; /* perturbed dot product */
78 } BRDFDAT; /* BRDF material data */
79
80
81 dirbrdf(cval, np, ldir, omega) /* compute source contribution */
82 COLOR cval; /* returned coefficient */
83 register BRDFDAT *np; /* material data */
84 FVECT ldir; /* light source direction */
85 double omega; /* light source size */
86 {
87 double ldot;
88 double dtmp;
89 COLOR ctmp;
90 FVECT ldx;
91 double lddx[3], pt[MAXDIM];
92 double vldx[4];
93 register char **sa;
94 register int i;
95
96 setcolor(cval, 0.0, 0.0, 0.0);
97
98 ldot = DOT(np->pnorm, ldir);
99
100 if (ldot <= FTINY && ldot >= -FTINY)
101 return; /* too close to grazing */
102
103 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
104 return; /* wrong side */
105
106 if (ldot > 0.0) {
107 /*
108 * Compute and add diffuse reflected component to returned
109 * color. The diffuse reflected component will always be
110 * modified by the color of the material.
111 */
112 copycolor(ctmp, np->rdiff);
113 dtmp = ldot * omega / PI;
114 scalecolor(ctmp, dtmp);
115 addcolor(cval, ctmp);
116 } else {
117 /*
118 * Diffuse transmitted component.
119 */
120 copycolor(ctmp, np->tdiff);
121 dtmp = -ldot * omega / PI;
122 scalecolor(ctmp, dtmp);
123 addcolor(cval, ctmp);
124 }
125 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
126 return; /* no specular component */
127 /* set up function */
128 setbrdfunc(np);
129 sa = np->mp->oargs.sarg;
130 errno = 0;
131 /* transform light vector */
132 multv3(ldx, ldir, funcxf.xfm);
133 for (i = 0; i < 3; i++)
134 lddx[i] = ldx[i]/funcxf.sca;
135 /* compute BRTDF */
136 if (np->mp->otype == MAT_BRTDF) {
137 if (sa[6][0] == '0') /* special case */
138 colval(ctmp,RED) = 0.0;
139 else
140 colval(ctmp,RED) = funvalue(sa[6], 3, lddx);
141 if (!strcmp(sa[7],sa[6]))
142 colval(ctmp,GRN) = colval(ctmp,RED);
143 else
144 colval(ctmp,GRN) = funvalue(sa[7], 3, lddx);
145 if (!strcmp(sa[8],sa[6]))
146 colval(ctmp,BLU) = colval(ctmp,RED);
147 else if (!strcmp(sa[8],sa[7]))
148 colval(ctmp,BLU) = colval(ctmp,GRN);
149 else
150 colval(ctmp,BLU) = funvalue(sa[8], 3, lddx);
151 dtmp = bright(ctmp);
152 } else if (np->dp == NULL) {
153 dtmp = funvalue(sa[0], 3, lddx);
154 setcolor(ctmp, dtmp, dtmp, dtmp);
155 } else {
156 for (i = 0; i < np->dp->nd; i++)
157 pt[i] = funvalue(sa[3+i], 3, lddx);
158 vldx[0] = datavalue(np->dp, pt);
159 vldx[1] = lddx[0]; vldx[2] = lddx[1]; vldx[3] = lddx[2];
160 dtmp = funvalue(sa[0], 4, vldx);
161 setcolor(ctmp, dtmp, dtmp, dtmp);
162 }
163 if (errno) {
164 objerror(np->mp, WARNING, "compute error");
165 return;
166 }
167 if (dtmp <= FTINY)
168 return;
169 if (ldot > 0.0) {
170 /*
171 * Compute reflected non-diffuse component.
172 */
173 if (np->mp->otype == MAT_MFUNC | np->mp->otype == MAT_MDATA)
174 multcolor(ctmp, np->mcolor);
175 dtmp = ldot * omega * np->rspec;
176 scalecolor(ctmp, dtmp);
177 addcolor(cval, ctmp);
178 } else {
179 /*
180 * Compute transmitted non-diffuse component.
181 */
182 if (np->mp->otype == MAT_TFUNC | np->mp->otype == MAT_TDATA)
183 multcolor(ctmp, np->mcolor);
184 dtmp = -ldot * omega * np->tspec;
185 scalecolor(ctmp, dtmp);
186 addcolor(cval, ctmp);
187 }
188 }
189
190
191 m_brdf(m, r) /* color a ray which hit a BRDTF material */
192 register OBJREC *m;
193 register RAY *r;
194 {
195 BRDFDAT nd;
196 RAY sr;
197 double transtest, transdist;
198 int hasrefl, hastrans;
199 COLOR ctmp;
200 register MFUNC *mf;
201 register int i;
202 /* check arguments */
203 if (m->oargs.nsargs < 10 | m->oargs.nfargs < 9)
204 objerror(m, USER, "bad # arguments");
205 nd.mp = m;
206 nd.pr = r;
207 /* dummy values */
208 nd.rspec = nd.tspec = 1.0;
209 nd.trans = 0.5;
210 /* diffuse reflectance */
211 if (r->rod > 0.0)
212 setcolor(nd.rdiff, m->oargs.farg[0],
213 m->oargs.farg[1],
214 m->oargs.farg[2]);
215 else
216 setcolor(nd.rdiff, m->oargs.farg[3],
217 m->oargs.farg[4],
218 m->oargs.farg[5]);
219 /* diffuse transmittance */
220 setcolor(nd.tdiff, m->oargs.farg[6],
221 m->oargs.farg[7],
222 m->oargs.farg[8]);
223 /* get modifiers */
224 raytexture(r, m->omod);
225 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
226 if (r->rod < 0.0) { /* orient perturbed values */
227 nd.pdot = -nd.pdot;
228 for (i = 0; i < 3; i++) {
229 nd.pnorm[i] = -nd.pnorm[i];
230 r->pert[i] = -r->pert[i];
231 }
232 }
233 copycolor(nd.mcolor, r->pcol); /* get pattern color */
234 multcolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
235 multcolor(nd.tdiff, nd.mcolor);
236 hasrefl = bright(nd.rdiff) > FTINY;
237 hastrans = bright(nd.tdiff) > FTINY;
238 /* load cal file */
239 nd.dp = NULL;
240 mf = getfunc(m, 9, 0x3f, 0);
241 /* compute transmitted ray */
242 setbrdfunc(&nd);
243 transtest = 0;
244 transdist = r->rot;
245 errno = 0;
246 setcolor(ctmp, evalue(mf->ep[3]),
247 evalue(mf->ep[4]),
248 evalue(mf->ep[5]));
249 if (errno)
250 objerror(m, WARNING, "compute error");
251 else if (rayorigin(&sr, r, TRANS, bright(ctmp)) == 0) {
252 if (!(r->crtype & SHADOW) &&
253 DOT(r->pert,r->pert) > FTINY*FTINY) {
254 for (i = 0; i < 3; i++) /* perturb direction */
255 sr.rdir[i] = r->rdir[i] - .75*r->pert[i];
256 if (normalize(sr.rdir) == 0.0) {
257 objerror(m, WARNING, "illegal perturbation");
258 VCOPY(sr.rdir, r->rdir);
259 }
260 } else {
261 VCOPY(sr.rdir, r->rdir);
262 transtest = 2;
263 }
264 rayvalue(&sr);
265 multcolor(sr.rcol, ctmp);
266 addcolor(r->rcol, sr.rcol);
267 transtest *= bright(sr.rcol);
268 transdist = r->rot + sr.rt;
269 }
270 if (r->crtype & SHADOW) /* the rest is shadow */
271 return(1);
272 /* compute reflected ray */
273 setbrdfunc(&nd);
274 errno = 0;
275 setcolor(ctmp, evalue(mf->ep[0]),
276 evalue(mf->ep[1]),
277 evalue(mf->ep[2]));
278 if (errno)
279 objerror(m, WARNING, "compute error");
280 else if (rayorigin(&sr, r, REFLECTED, bright(ctmp)) == 0) {
281 for (i = 0; i < 3; i++)
282 sr.rdir[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
283 rayvalue(&sr);
284 multcolor(sr.rcol, ctmp);
285 addcolor(r->rcol, sr.rcol);
286 }
287 /* compute ambient */
288 if (hasrefl) {
289 if (nd.pdot < 0.0)
290 flipsurface(r);
291 ambient(ctmp, r);
292 multcolor(ctmp, nd.rdiff);
293 addcolor(r->rcol, ctmp); /* add to returned color */
294 if (nd.pdot < 0.0)
295 flipsurface(r);
296 }
297 if (hastrans) { /* from other side */
298 if (nd.pdot > 0.0)
299 flipsurface(r);
300 ambient(ctmp, r);
301 multcolor(ctmp, nd.tdiff);
302 addcolor(r->rcol, ctmp);
303 if (nd.pdot > 0.0)
304 flipsurface(r);
305 }
306 if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
307 direct(r, dirbrdf, &nd); /* add direct component */
308 /* check distance */
309 if (transtest > bright(r->rcol))
310 r->rt = transdist;
311
312 return(1);
313 }
314
315
316
317 m_brdf2(m, r) /* color a ray which hit a BRDF material */
318 register OBJREC *m;
319 register RAY *r;
320 {
321 BRDFDAT nd;
322 COLOR ctmp;
323 double dtmp;
324 /* always a shadow */
325 if (r->crtype & SHADOW)
326 return(1);
327 /* check arguments */
328 if (m->oargs.nsargs < (hasdata(m->otype)?4:2) | m->oargs.nfargs <
329 (m->otype==MAT_TFUNC|m->otype==MAT_TDATA?6:4))
330 objerror(m, USER, "bad # arguments");
331 nd.mp = m;
332 nd.pr = r;
333 /* get material color */
334 setcolor(nd.mcolor, m->oargs.farg[0],
335 m->oargs.farg[1],
336 m->oargs.farg[2]);
337 /* get specular component */
338 nd.rspec = m->oargs.farg[3];
339 /* compute transmittance */
340 if (m->otype == MAT_TFUNC | m->otype == MAT_TDATA) {
341 nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
342 nd.tspec = nd.trans * m->oargs.farg[5];
343 dtmp = nd.trans - nd.tspec;
344 setcolor(nd.tdiff, dtmp, dtmp, dtmp);
345 } else {
346 nd.tspec = nd.trans = 0.0;
347 setcolor(nd.tdiff, 0.0, 0.0, 0.0);
348 }
349 /* compute reflectance */
350 dtmp = 1.0 - nd.trans - nd.rspec;
351 setcolor(nd.rdiff, dtmp, dtmp, dtmp);
352 /* fix orientation */
353 if (r->rod < 0.0)
354 flipsurface(r);
355 /* get modifiers */
356 raytexture(r, m->omod);
357 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
358 multcolor(nd.mcolor, r->pcol); /* modify material color */
359 multcolor(nd.rdiff, nd.mcolor);
360 multcolor(nd.tdiff, nd.mcolor);
361 /* load auxiliary files */
362 if (hasdata(m->otype)) {
363 nd.dp = getdata(m->oargs.sarg[1]);
364 getfunc(m, 2, 0, 0);
365 } else {
366 nd.dp = NULL;
367 getfunc(m, 1, 0, 0);
368 }
369 /* compute ambient */
370 if (nd.trans < 1.0-FTINY) {
371 ambient(ctmp, r);
372 scalecolor(ctmp, 1.0-nd.trans);
373 multcolor(ctmp, nd.mcolor); /* modified by material color */
374 addcolor(r->rcol, ctmp); /* add to returned color */
375 }
376 if (nd.trans > FTINY) { /* from other side */
377 flipsurface(r);
378 ambient(ctmp, r);
379 scalecolor(ctmp, nd.trans);
380 multcolor(ctmp, nd.mcolor);
381 addcolor(r->rcol, ctmp);
382 flipsurface(r);
383 }
384 /* add direct component */
385 direct(r, dirbrdf, &nd);
386
387 return(1);
388 }
389
390
391 setbrdfunc(np) /* set up brdf function and variables */
392 register BRDFDAT *np;
393 {
394 FVECT vec;
395
396 if (setfunc(np->mp, np->pr) == 0)
397 return(0); /* it's OK, setfunc says we're done */
398 /* else (re)assign special variables */
399 multv3(vec, np->pnorm, funcxf.xfm);
400 varset("NxP", '=', vec[0]/funcxf.sca);
401 varset("NyP", '=', vec[1]/funcxf.sca);
402 varset("NzP", '=', vec[2]/funcxf.sca);
403 varset("RdotP", '=', np->pdot <= -1.0 ? -1.0 :
404 np->pdot >= 1.0 ? 1.0 : np->pdot);
405 varset("CrP", '=', colval(np->mcolor,RED));
406 varset("CgP", '=', colval(np->mcolor,GRN));
407 varset("CbP", '=', colval(np->mcolor,BLU));
408 return(1);
409 }