| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: m_brdf.c,v 2.43 2024/12/13 19:05:03 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Shading for materials with arbitrary BRDF's
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include "copyright.h"
|
| 9 |
|
| 10 |
#include "ray.h"
|
| 11 |
#include "ambient.h"
|
| 12 |
#include "data.h"
|
| 13 |
#include "source.h"
|
| 14 |
#include "otypes.h"
|
| 15 |
#include "rtotypes.h"
|
| 16 |
#include "func.h"
|
| 17 |
#include "pmapmat.h"
|
| 18 |
|
| 19 |
/*
|
| 20 |
* Arguments to this material include the color and specularity.
|
| 21 |
* String arguments include the reflection function and files.
|
| 22 |
* The BRDF is currently used just for the specular component to light
|
| 23 |
* sources. Reflectance values or data coordinates are functions
|
| 24 |
* of the direction to the light source. (Data modification functions
|
| 25 |
* are passed the source direction as args 2-4.)
|
| 26 |
* We orient the surface towards the incoming ray, so a single
|
| 27 |
* surface can be used to represent an infinitely thin object.
|
| 28 |
*
|
| 29 |
* Arguments for MAT_PFUNC and MAT_MFUNC are:
|
| 30 |
* 2+ func funcfile transform
|
| 31 |
* 0
|
| 32 |
* 4+ red grn blu specularity A5 ..
|
| 33 |
*
|
| 34 |
* Arguments for MAT_PDATA and MAT_MDATA are:
|
| 35 |
* 4+ func datafile funcfile v0 .. transform
|
| 36 |
* 0
|
| 37 |
* 4+ red grn blu specularity A5 ..
|
| 38 |
*
|
| 39 |
* Arguments for MAT_TFUNC are:
|
| 40 |
* 2+ func funcfile transform
|
| 41 |
* 0
|
| 42 |
* 6+ red grn blu rspec trans tspec A7 ..
|
| 43 |
*
|
| 44 |
* Arguments for MAT_TDATA are:
|
| 45 |
* 4+ func datafile funcfile v0 .. transform
|
| 46 |
* 0
|
| 47 |
* 6+ red grn blu rspec trans tspec A7 ..
|
| 48 |
*
|
| 49 |
* Arguments for the more general MAT_BRTDF are:
|
| 50 |
* 10+ rrefl grefl brefl
|
| 51 |
* rtrns gtrns btrns
|
| 52 |
* rbrtd gbrtd bbrtd
|
| 53 |
* funcfile transform
|
| 54 |
* 0
|
| 55 |
* 9+ rdf gdf bdf
|
| 56 |
* rdb gdb bdb
|
| 57 |
* rdt gdt bdt A10 ..
|
| 58 |
*
|
| 59 |
* In addition to the normal variables available to functions,
|
| 60 |
* we define the following:
|
| 61 |
* NxP, NyP, NzP - perturbed surface normal
|
| 62 |
* RdotP - perturbed ray dot product
|
| 63 |
* CrP, CgP, CbP - perturbed material color (or pattern)
|
| 64 |
*/
|
| 65 |
|
| 66 |
typedef struct {
|
| 67 |
OBJREC *mp; /* material pointer */
|
| 68 |
RAY *pr; /* intersected ray */
|
| 69 |
DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
|
| 70 |
SCOLOR mcolor; /* material (or pattern) color */
|
| 71 |
SCOLOR rdiff; /* diffuse reflection */
|
| 72 |
SCOLOR tdiff; /* diffuse transmission */
|
| 73 |
double rspec; /* specular reflectance (1 for BRDTF) */
|
| 74 |
double trans; /* transmissivity (.5 for BRDTF) */
|
| 75 |
double tspec; /* specular transmittance (1 for BRDTF) */
|
| 76 |
FVECT pnorm; /* perturbed surface normal */
|
| 77 |
double pdot; /* perturbed dot product */
|
| 78 |
} BRDFDAT; /* BRDF material data */
|
| 79 |
|
| 80 |
|
| 81 |
static int setbrdfunc(BRDFDAT *np);
|
| 82 |
|
| 83 |
|
| 84 |
static void
|
| 85 |
dirbrdf( /* compute source contribution */
|
| 86 |
SCOLOR scval, /* returned coefficient */
|
| 87 |
void *nnp, /* material data */
|
| 88 |
FVECT ldir, /* light source direction */
|
| 89 |
double omega /* light source size */
|
| 90 |
)
|
| 91 |
{
|
| 92 |
BRDFDAT *np = nnp;
|
| 93 |
double ldot;
|
| 94 |
double dtmp;
|
| 95 |
SCOLOR sctmp;
|
| 96 |
COLOR ctmp;
|
| 97 |
FVECT ldx;
|
| 98 |
static double vldx[5], pt[MAXDDIM];
|
| 99 |
char **sa;
|
| 100 |
int i;
|
| 101 |
#define lddx (vldx+1)
|
| 102 |
|
| 103 |
scolorblack(scval);
|
| 104 |
|
| 105 |
ldot = DOT(np->pnorm, ldir);
|
| 106 |
|
| 107 |
if (ldot <= FTINY && ldot >= -FTINY)
|
| 108 |
return; /* too close to grazing */
|
| 109 |
|
| 110 |
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
|
| 111 |
return; /* wrong side */
|
| 112 |
|
| 113 |
if (ldot > 0.0) {
|
| 114 |
/*
|
| 115 |
* Compute and add diffuse reflected component to returned
|
| 116 |
* color. The diffuse reflected component will always be
|
| 117 |
* modified by the color of the material.
|
| 118 |
*/
|
| 119 |
copyscolor(sctmp, np->rdiff);
|
| 120 |
dtmp = ldot * omega / PI;
|
| 121 |
scalescolor(sctmp, dtmp);
|
| 122 |
saddscolor(scval, sctmp);
|
| 123 |
} else {
|
| 124 |
/*
|
| 125 |
* Diffuse transmitted component.
|
| 126 |
*/
|
| 127 |
copyscolor(sctmp, np->tdiff);
|
| 128 |
dtmp = -ldot * omega / PI;
|
| 129 |
scalescolor(sctmp, dtmp);
|
| 130 |
saddscolor(scval, sctmp);
|
| 131 |
}
|
| 132 |
if ((ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY) ||
|
| 133 |
ambRayInPmap(np->pr))
|
| 134 |
return; /* diffuse only */
|
| 135 |
/* set up function */
|
| 136 |
setbrdfunc(np);
|
| 137 |
sa = np->mp->oargs.sarg;
|
| 138 |
errno = 0;
|
| 139 |
/* transform light vector */
|
| 140 |
multv3(ldx, ldir, funcxf.xfm);
|
| 141 |
for (i = 0; i < 3; i++)
|
| 142 |
lddx[i] = ldx[i]/funcxf.sca;
|
| 143 |
lddx[3] = omega;
|
| 144 |
/* compute BRTDF */
|
| 145 |
if (np->mp->otype == MAT_BRTDF) {
|
| 146 |
if (sa[6][0] == '0' && !sa[6][1]) /* special case */
|
| 147 |
colval(ctmp,RED) = 0.0;
|
| 148 |
else
|
| 149 |
colval(ctmp,RED) = funvalue(sa[6], 4, lddx);
|
| 150 |
if (sa[7][0] == '0' && !sa[7][1])
|
| 151 |
colval(ctmp,GRN) = 0.0;
|
| 152 |
else if (!strcmp(sa[7],sa[6]))
|
| 153 |
colval(ctmp,GRN) = colval(ctmp,RED);
|
| 154 |
else
|
| 155 |
colval(ctmp,GRN) = funvalue(sa[7], 4, lddx);
|
| 156 |
if (sa[8][0] == '0' && !sa[8][1])
|
| 157 |
colval(ctmp,BLU) = 0.0;
|
| 158 |
else if (!strcmp(sa[8],sa[6]))
|
| 159 |
colval(ctmp,BLU) = colval(ctmp,RED);
|
| 160 |
else if (!strcmp(sa[8],sa[7]))
|
| 161 |
colval(ctmp,BLU) = colval(ctmp,GRN);
|
| 162 |
else
|
| 163 |
colval(ctmp,BLU) = funvalue(sa[8], 4, lddx);
|
| 164 |
dtmp = bright(ctmp);
|
| 165 |
} else if (np->dp == NULL) {
|
| 166 |
dtmp = funvalue(sa[0], 4, lddx);
|
| 167 |
setcolor(ctmp, dtmp, dtmp, dtmp);
|
| 168 |
} else {
|
| 169 |
for (i = 0; i < np->dp->nd; i++)
|
| 170 |
pt[i] = funvalue(sa[3+i], 4, lddx);
|
| 171 |
vldx[0] = datavalue(np->dp, pt);
|
| 172 |
dtmp = funvalue(sa[0], 5, vldx);
|
| 173 |
setcolor(ctmp, dtmp, dtmp, dtmp);
|
| 174 |
}
|
| 175 |
if ((errno == EDOM) | (errno == ERANGE)) {
|
| 176 |
objerror(np->mp, WARNING, "compute error");
|
| 177 |
return;
|
| 178 |
}
|
| 179 |
if (dtmp <= FTINY)
|
| 180 |
return;
|
| 181 |
setscolor(sctmp, colval(ctmp,RED), colval(ctmp,GRN), colval(ctmp,BLU));
|
| 182 |
if (ldot > 0.0) {
|
| 183 |
/*
|
| 184 |
* Compute reflected non-diffuse component.
|
| 185 |
*/
|
| 186 |
if ((np->mp->otype == MAT_MFUNC) | (np->mp->otype == MAT_MDATA))
|
| 187 |
smultscolor(sctmp, np->mcolor);
|
| 188 |
dtmp = ldot * omega * np->rspec;
|
| 189 |
scalescolor(sctmp, dtmp);
|
| 190 |
saddscolor(scval, sctmp);
|
| 191 |
} else {
|
| 192 |
/*
|
| 193 |
* Compute transmitted non-diffuse component.
|
| 194 |
*/
|
| 195 |
if ((np->mp->otype == MAT_TFUNC) | (np->mp->otype == MAT_TDATA))
|
| 196 |
smultscolor(sctmp, np->mcolor);
|
| 197 |
dtmp = -ldot * omega * np->tspec;
|
| 198 |
scalescolor(sctmp, dtmp);
|
| 199 |
saddscolor(scval, sctmp);
|
| 200 |
}
|
| 201 |
#undef lddx
|
| 202 |
}
|
| 203 |
|
| 204 |
|
| 205 |
int
|
| 206 |
m_brdf( /* color a ray that hit a BRDTfunc material */
|
| 207 |
OBJREC *m,
|
| 208 |
RAY *r
|
| 209 |
)
|
| 210 |
{
|
| 211 |
BRDFDAT nd;
|
| 212 |
RAY sr;
|
| 213 |
int hasrefl, hastrans;
|
| 214 |
int hastexture;
|
| 215 |
SCOLOR sctmp;
|
| 216 |
FVECT vtmp;
|
| 217 |
double d;
|
| 218 |
MFUNC *mf;
|
| 219 |
int i;
|
| 220 |
/* check arguments */
|
| 221 |
if ((m->oargs.nsargs < 10) | (m->oargs.nfargs < 9))
|
| 222 |
objerror(m, USER, "bad # arguments");
|
| 223 |
nd.mp = m;
|
| 224 |
nd.pr = r;
|
| 225 |
/* dummy values */
|
| 226 |
nd.rspec = nd.tspec = 1.0;
|
| 227 |
nd.trans = 0.5;
|
| 228 |
/* diffuse reflectance */
|
| 229 |
if (r->rod > 0.0)
|
| 230 |
setscolor(nd.rdiff, m->oargs.farg[0],
|
| 231 |
m->oargs.farg[1],
|
| 232 |
m->oargs.farg[2]);
|
| 233 |
else
|
| 234 |
setscolor(nd.rdiff, m->oargs.farg[3],
|
| 235 |
m->oargs.farg[4],
|
| 236 |
m->oargs.farg[5]);
|
| 237 |
/* diffuse transmittance */
|
| 238 |
setscolor(nd.tdiff, m->oargs.farg[6],
|
| 239 |
m->oargs.farg[7],
|
| 240 |
m->oargs.farg[8]);
|
| 241 |
/* get modifiers */
|
| 242 |
raytexture(r, m->omod);
|
| 243 |
hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY);
|
| 244 |
if (hastexture) { /* perturb normal */
|
| 245 |
nd.pdot = raynormal(nd.pnorm, r);
|
| 246 |
} else {
|
| 247 |
VCOPY(nd.pnorm, r->ron);
|
| 248 |
nd.pdot = r->rod;
|
| 249 |
}
|
| 250 |
if (r->rod < 0.0) { /* orient perturbed values */
|
| 251 |
nd.pdot = -nd.pdot;
|
| 252 |
for (i = 0; i < 3; i++) {
|
| 253 |
nd.pnorm[i] = -nd.pnorm[i];
|
| 254 |
r->pert[i] = -r->pert[i];
|
| 255 |
}
|
| 256 |
}
|
| 257 |
copyscolor(nd.mcolor, r->pcol); /* get pattern color */
|
| 258 |
smultscolor(nd.rdiff, nd.mcolor); /* modify diffuse values */
|
| 259 |
smultscolor(nd.tdiff, nd.mcolor);
|
| 260 |
hasrefl = (sintens(nd.rdiff) > FTINY);
|
| 261 |
hastrans = (sintens(nd.tdiff) > FTINY);
|
| 262 |
/* load cal file */
|
| 263 |
nd.dp = NULL;
|
| 264 |
mf = getfunc(m, 9, 0x3F, 0);
|
| 265 |
/* compute transmitted ray */
|
| 266 |
setbrdfunc(&nd);
|
| 267 |
errno = 0;
|
| 268 |
setscolor(sctmp, evalue(mf->ep[3]),
|
| 269 |
evalue(mf->ep[4]),
|
| 270 |
evalue(mf->ep[5]));
|
| 271 |
if ((errno == EDOM) | (errno == ERANGE))
|
| 272 |
objerror(m, WARNING, "compute error");
|
| 273 |
else if (rayorigin(&sr, TRANS, r, sctmp) == 0) {
|
| 274 |
if (hastexture && !(r->crtype & (SHADOW|AMBIENT))) {
|
| 275 |
/* perturb direction */
|
| 276 |
VSUB(sr.rdir, r->rdir, r->pert);
|
| 277 |
if (normalize(sr.rdir) == 0.0) {
|
| 278 |
objerror(m, WARNING, "illegal perturbation");
|
| 279 |
VCOPY(sr.rdir, r->rdir);
|
| 280 |
}
|
| 281 |
} else {
|
| 282 |
VCOPY(sr.rdir, r->rdir);
|
| 283 |
}
|
| 284 |
rayvalue(&sr);
|
| 285 |
smultscolor(sr.rcol, sr.rcoef);
|
| 286 |
saddscolor(r->rcol, sr.rcol);
|
| 287 |
if ((!hastexture || r->crtype & (SHADOW|AMBIENT)) &&
|
| 288 |
nd.tspec > pbright(nd.tdiff) + pbright(nd.rdiff))
|
| 289 |
r->rxt = r->rot + raydistance(&sr);
|
| 290 |
}
|
| 291 |
if (r->crtype & SHADOW) /* the rest is shadow */
|
| 292 |
return(1);
|
| 293 |
|
| 294 |
/* compute reflected ray */
|
| 295 |
setbrdfunc(&nd);
|
| 296 |
errno = 0;
|
| 297 |
setscolor(sctmp, evalue(mf->ep[0]),
|
| 298 |
evalue(mf->ep[1]),
|
| 299 |
evalue(mf->ep[2]));
|
| 300 |
if ((errno == EDOM) | (errno == ERANGE))
|
| 301 |
objerror(m, WARNING, "compute error");
|
| 302 |
else if (rayorigin(&sr, REFLECTED, r, sctmp) == 0) {
|
| 303 |
VSUM(sr.rdir, r->rdir, nd.pnorm, 2.*nd.pdot);
|
| 304 |
checknorm(sr.rdir);
|
| 305 |
rayvalue(&sr);
|
| 306 |
smultscolor(sr.rcol, sr.rcoef);
|
| 307 |
copyscolor(r->mcol, sr.rcol);
|
| 308 |
saddscolor(r->rcol, sr.rcol);
|
| 309 |
r->rmt = r->rot;
|
| 310 |
if (r->ro != NULL && isflat(r->ro->otype) &&
|
| 311 |
!hastexture | (r->crtype & AMBIENT))
|
| 312 |
r->rmt += raydistance(&sr);
|
| 313 |
}
|
| 314 |
/* compute ambient */
|
| 315 |
if (hasrefl) {
|
| 316 |
copyscolor(sctmp, nd.rdiff);
|
| 317 |
multambient(sctmp, r, nd.pnorm);
|
| 318 |
saddscolor(r->rcol, sctmp); /* add to returned color */
|
| 319 |
}
|
| 320 |
if (hastrans) { /* from other side */
|
| 321 |
vtmp[0] = -nd.pnorm[0];
|
| 322 |
vtmp[1] = -nd.pnorm[1];
|
| 323 |
vtmp[2] = -nd.pnorm[2];
|
| 324 |
copyscolor(sctmp, nd.tdiff);
|
| 325 |
multambient(sctmp, r, vtmp);
|
| 326 |
saddscolor(r->rcol, sctmp);
|
| 327 |
}
|
| 328 |
if (hasrefl | hastrans || m->oargs.sarg[6][0] != '0')
|
| 329 |
direct(r, dirbrdf, &nd); /* add direct component */
|
| 330 |
|
| 331 |
return(1);
|
| 332 |
}
|
| 333 |
|
| 334 |
|
| 335 |
|
| 336 |
int
|
| 337 |
m_brdf2( /* color a ray that hit a BRDF material */
|
| 338 |
OBJREC *m,
|
| 339 |
RAY *r
|
| 340 |
)
|
| 341 |
{
|
| 342 |
BRDFDAT nd;
|
| 343 |
SCOLOR sctmp;
|
| 344 |
FVECT vtmp;
|
| 345 |
double dtmp;
|
| 346 |
/* always a shadow */
|
| 347 |
if (r->crtype & SHADOW)
|
| 348 |
return(1);
|
| 349 |
/* check for back side */
|
| 350 |
if (r->rod < 0.0) {
|
| 351 |
if (!backvis) {
|
| 352 |
raytrans(r);
|
| 353 |
return(1);
|
| 354 |
}
|
| 355 |
raytexture(r, m->omod);
|
| 356 |
flipsurface(r); /* reorient if backvis */
|
| 357 |
} else
|
| 358 |
raytexture(r, m->omod);
|
| 359 |
/* check arguments */
|
| 360 |
if ((m->oargs.nsargs < (hasdata(m->otype)?4:2)) | (m->oargs.nfargs <
|
| 361 |
((m->otype==MAT_TFUNC)|(m->otype==MAT_TDATA)?6:4)))
|
| 362 |
objerror(m, USER, "bad # arguments");
|
| 363 |
|
| 364 |
nd.mp = m;
|
| 365 |
nd.pr = r;
|
| 366 |
/* get material color */
|
| 367 |
setscolor(nd.mcolor, m->oargs.farg[0],
|
| 368 |
m->oargs.farg[1],
|
| 369 |
m->oargs.farg[2]);
|
| 370 |
/* get specular component */
|
| 371 |
nd.rspec = m->oargs.farg[3];
|
| 372 |
/* compute transmittance */
|
| 373 |
if ((m->otype == MAT_TFUNC) | (m->otype == MAT_TDATA)) {
|
| 374 |
nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
|
| 375 |
nd.tspec = nd.trans * m->oargs.farg[5];
|
| 376 |
dtmp = nd.trans - nd.tspec;
|
| 377 |
setscolor(nd.tdiff, dtmp, dtmp, dtmp);
|
| 378 |
} else {
|
| 379 |
nd.tspec = nd.trans = 0.0;
|
| 380 |
scolorblack(nd.tdiff);
|
| 381 |
}
|
| 382 |
/* compute reflectance */
|
| 383 |
dtmp = 1.0 - nd.trans - nd.rspec;
|
| 384 |
setscolor(nd.rdiff, dtmp, dtmp, dtmp);
|
| 385 |
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
|
| 386 |
smultscolor(nd.mcolor, r->pcol); /* modify material color */
|
| 387 |
smultscolor(nd.rdiff, nd.mcolor);
|
| 388 |
smultscolor(nd.tdiff, nd.mcolor);
|
| 389 |
/* load auxiliary files */
|
| 390 |
if (hasdata(m->otype)) {
|
| 391 |
nd.dp = getdata(m->oargs.sarg[1]);
|
| 392 |
getfunc(m, 2, 0, 0);
|
| 393 |
} else {
|
| 394 |
nd.dp = NULL;
|
| 395 |
getfunc(m, 1, 0, 0);
|
| 396 |
}
|
| 397 |
/* compute ambient */
|
| 398 |
if (nd.trans < 1.0-FTINY) {
|
| 399 |
copyscolor(sctmp, nd.mcolor); /* modified by material color */
|
| 400 |
scalescolor(sctmp, 1.0-nd.trans);
|
| 401 |
multambient(sctmp, r, nd.pnorm);
|
| 402 |
saddscolor(r->rcol, sctmp); /* add to returned color */
|
| 403 |
}
|
| 404 |
if (nd.trans > FTINY) { /* from other side */
|
| 405 |
vtmp[0] = -nd.pnorm[0];
|
| 406 |
vtmp[1] = -nd.pnorm[1];
|
| 407 |
vtmp[2] = -nd.pnorm[2];
|
| 408 |
copyscolor(sctmp, nd.mcolor);
|
| 409 |
scalescolor(sctmp, nd.trans);
|
| 410 |
multambient(sctmp, r, vtmp);
|
| 411 |
saddscolor(r->rcol, sctmp);
|
| 412 |
}
|
| 413 |
/* add direct component */
|
| 414 |
direct(r, dirbrdf, &nd);
|
| 415 |
|
| 416 |
return(1);
|
| 417 |
}
|
| 418 |
|
| 419 |
|
| 420 |
static int
|
| 421 |
setbrdfunc( /* set up brdf function and variables */
|
| 422 |
BRDFDAT *np
|
| 423 |
)
|
| 424 |
{
|
| 425 |
FVECT vec;
|
| 426 |
COLOR ctmp;
|
| 427 |
|
| 428 |
if (setfunc(np->mp, np->pr) == 0)
|
| 429 |
return(0); /* it's OK, setfunc says we're done */
|
| 430 |
/* else (re)assign special variables */
|
| 431 |
multv3(vec, np->pnorm, funcxf.xfm);
|
| 432 |
varset("NxP`", '=', vec[0]/funcxf.sca);
|
| 433 |
varset("NyP`", '=', vec[1]/funcxf.sca);
|
| 434 |
varset("NzP`", '=', vec[2]/funcxf.sca);
|
| 435 |
varset("RdotP`", '=', np->pdot);
|
| 436 |
scolor_color(ctmp, np->mcolor); /* should use scolor_rgb()? */
|
| 437 |
varset("CrP", '=', colval(ctmp,RED));
|
| 438 |
varset("CgP", '=', colval(ctmp,GRN));
|
| 439 |
varset("CbP", '=', colval(ctmp,BLU));
|
| 440 |
return(1);
|
| 441 |
}
|