ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 1.9
Committed: Thu Jun 13 13:58:16 1991 UTC (32 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.8: +0 -1 lines
Log Message:
changed initialization of effective length

File Contents

# User Rev Content
1 greg 1.7 /* Copyright (c) 1991 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Shading for materials with arbitrary BRDF's
9     */
10    
11     #include "ray.h"
12    
13     #include "data.h"
14    
15     #include "otypes.h"
16    
17     /*
18     * Arguments to this material include the color and specularity.
19     * String arguments include the reflection function and files.
20     * The BRDF is currently used just for the specular component to light
21     * sources. Reflectance values or data coordinates are functions
22     * of the direction to the light source.
23     * We orient the surface towards the incoming ray, so a single
24     * surface can be used to represent an infinitely thin object.
25     *
26     * Arguments for MAT_PFUNC and MAT_MFUNC are:
27 greg 1.4 * 2+ func funcfile transform
28 greg 1.1 * 0
29 greg 1.4 * 4+ red grn blu specularity A5 ..
30 greg 1.1 *
31     * Arguments for MAT_PDATA and MAT_MDATA are:
32 greg 1.4 * 4+ func datafile funcfile v0 .. transform
33 greg 1.1 * 0
34 greg 1.4 * 4+ red grn blu specularity A5 ..
35 greg 1.5 *
36     * Arguments for MAT_TFUNC are:
37     * 2+ func funcfile transform
38     * 0
39     * 4+ red grn blu rspec trans tspec A7 ..
40     *
41     * Arguments for MAT_TDATA are:
42     * 4+ func datafile funcfile v0 .. transform
43     * 0
44     * 4+ red grn blu rspec trans tspec A7 ..
45     *
46     * Arguments for the more general MAT_BRTDF are:
47     * 10+ rrefl grefl brefl
48     * rtrns gtrns btrns
49     * rbrtd gbrtd bbrtd
50     * funcfile transform
51     * 0
52     * 6+ red grn blu rspec trans tspec A7 ..
53     *
54     * In addition to the normal variables available to functions,
55     * we define the following:
56     * NxP, NyP, NzP - perturbed surface normal
57     * RdotP - perturbed ray dot product
58     * CrP, CgP, CbP - perturbed material color
59 greg 1.1 */
60    
61 greg 1.2 extern double funvalue(), varvalue();
62 greg 1.5 extern XF funcxf;
63 greg 1.2
64 greg 1.1 typedef struct {
65     OBJREC *mp; /* material pointer */
66     RAY *pr; /* intersected ray */
67 greg 1.5 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
68 greg 1.1 COLOR mcolor; /* color of this material */
69     double rspec; /* specular reflection */
70     double rdiff; /* diffuse reflection */
71 greg 1.5 double trans; /* transmissivity */
72     double tspec; /* specular transmission */
73     double tdiff; /* diffuse transmission */
74 greg 1.1 FVECT pnorm; /* perturbed surface normal */
75     double pdot; /* perturbed dot product */
76     } BRDFDAT; /* BRDF material data */
77    
78    
79     dirbrdf(cval, np, ldir, omega) /* compute source contribution */
80     COLOR cval; /* returned coefficient */
81     register BRDFDAT *np; /* material data */
82     FVECT ldir; /* light source direction */
83     double omega; /* light source size */
84     {
85     double ldot;
86     double dtmp;
87     COLOR ctmp;
88 greg 1.4 FVECT ldx;
89 greg 1.1 double pt[MAXDIM];
90 greg 1.5 register char **sa;
91 greg 1.1 register int i;
92    
93     setcolor(cval, 0.0, 0.0, 0.0);
94    
95     ldot = DOT(np->pnorm, ldir);
96    
97 greg 1.5 if (ldot <= FTINY && ldot >= -FTINY)
98     return; /* too close to grazing */
99     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
100 greg 1.1 return; /* wrong side */
101    
102 greg 1.5 if (ldot > 0.0 && np->rdiff > FTINY) {
103 greg 1.1 /*
104     * Compute and add diffuse reflected component to returned
105     * color. The diffuse reflected component will always be
106     * modified by the color of the material.
107     */
108     copycolor(ctmp, np->mcolor);
109     dtmp = ldot * omega * np->rdiff / PI;
110     scalecolor(ctmp, dtmp);
111     addcolor(cval, ctmp);
112     }
113 greg 1.5 if (ldot < 0.0 && np->tdiff > FTINY) {
114 greg 1.1 /*
115 greg 1.5 * Diffuse transmitted component.
116 greg 1.1 */
117 greg 1.5 copycolor(ctmp, np->mcolor);
118     dtmp = -ldot * omega * np->tdiff / PI;
119     scalecolor(ctmp, dtmp);
120     addcolor(cval, ctmp);
121 greg 1.1 }
122 greg 1.5 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
123     return; /* no specular component */
124     /* set up function */
125     setfunc(np->mp, np->pr);
126     sa = np->mp->oargs.sarg;
127     errno = 0;
128     /* transform light vector */
129     multv3(ldx, ldir, funcxf.xfm);
130     for (i = 0; i < 3; i++)
131     ldx[i] /= funcxf.sca;
132     /* compute BRTDF */
133     if (np->mp->otype == MAT_BRTDF) {
134     colval(ctmp,RED) = funvalue(sa[6], 3, ldx);
135 greg 1.7 if (!strcmp(sa[7],sa[6]))
136 greg 1.5 colval(ctmp,GRN) = colval(ctmp,RED);
137     else
138     colval(ctmp,GRN) = funvalue(sa[7], 3, ldx);
139 greg 1.7 if (!strcmp(sa[8],sa[6]))
140 greg 1.5 colval(ctmp,BLU) = colval(ctmp,RED);
141 greg 1.7 else if (!strcmp(sa[8],sa[7]))
142 greg 1.5 colval(ctmp,BLU) = colval(ctmp,GRN);
143     else
144     colval(ctmp,BLU) = funvalue(sa[8], 3, ldx);
145     dtmp = bright(ctmp);
146     } else if (np->dp == NULL) {
147     dtmp = funvalue(sa[0], 3, ldx);
148     setcolor(ctmp, dtmp, dtmp, dtmp);
149     } else {
150     for (i = 0; i < np->dp->nd; i++)
151     pt[i] = funvalue(sa[3+i], 3, ldx);
152     dtmp = datavalue(np->dp, pt);
153     dtmp = funvalue(sa[0], 1, &dtmp);
154     setcolor(ctmp, dtmp, dtmp, dtmp);
155     }
156     if (errno)
157     goto computerr;
158     if (dtmp <= FTINY)
159     return;
160     if (ldot > 0.0) {
161     /*
162     * Compute reflected non-diffuse component.
163     */
164 greg 1.6 if (np->mp->otype == MAT_MFUNC || np->mp->otype == MAT_MDATA)
165     multcolor(ctmp, np->mcolor);
166     dtmp = ldot * omega * np->rspec;
167 greg 1.5 scalecolor(ctmp, dtmp);
168     addcolor(cval, ctmp);
169     } else {
170     /*
171     * Compute transmitted non-diffuse component.
172     */
173 greg 1.6 if (np->mp->otype == MAT_TFUNC || np->mp->otype == MAT_TDATA)
174     multcolor(ctmp, np->mcolor);
175 greg 1.5 dtmp = -ldot * omega * np->tspec;
176     scalecolor(ctmp, dtmp);
177     addcolor(cval, ctmp);
178     }
179 greg 1.1 return;
180     computerr:
181     objerror(np->mp, WARNING, "compute error");
182     return;
183     }
184    
185    
186     m_brdf(m, r) /* color a ray which hit a BRDF material */
187     register OBJREC *m;
188     register RAY *r;
189     {
190 greg 1.5 int minsa, minfa;
191 greg 1.1 BRDFDAT nd;
192 greg 1.7 double transtest, transdist;
193 greg 1.1 COLOR ctmp;
194 greg 1.5 double dtmp;
195     FVECT vec;
196 greg 1.1 register int i;
197 greg 1.5 /* check arguments */
198     switch (m->otype) {
199     case MAT_PFUNC: case MAT_MFUNC:
200     minsa = 2; minfa = 4; break;
201     case MAT_PDATA: case MAT_MDATA:
202     minsa = 4; minfa = 4; break;
203     case MAT_TFUNC:
204     minsa = 2; minfa = 6; break;
205     case MAT_TDATA:
206     minsa = 4; minfa = 6; break;
207     case MAT_BRTDF:
208     minsa = 10; minfa = 6; break;
209     }
210     if (m->oargs.nsargs < minsa || m->oargs.nfargs < minfa)
211 greg 1.1 objerror(m, USER, "bad # arguments");
212     nd.mp = m;
213     nd.pr = r;
214 greg 1.5 /* get specular component */
215     nd.rspec = m->oargs.farg[3];
216     /* compute transmission */
217     if (m->otype == MAT_TFUNC || m->otype == MAT_TDATA
218     || m->otype == MAT_BRTDF) {
219     nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
220     nd.tspec = nd.trans * m->oargs.farg[5];
221     nd.tdiff = nd.trans - nd.tspec;
222     } else
223     nd.tdiff = nd.tspec = nd.trans = 0.0;
224     /* early shadow check */
225     if (r->crtype & SHADOW && (m->otype != MAT_BRTDF || nd.tspec <= FTINY))
226     return;
227     /* diffuse reflection */
228     nd.rdiff = 1.0 - nd.trans - nd.rspec;
229     /* get material color */
230     setcolor(nd.mcolor, m->oargs.farg[0],
231     m->oargs.farg[1],
232     m->oargs.farg[2]);
233     /* fix orientation */
234     if (r->rod < 0.0)
235     flipsurface(r);
236     /* get modifiers */
237     raytexture(r, m->omod);
238     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
239     multcolor(nd.mcolor, r->pcol); /* modify material color */
240 greg 1.7 transtest = 0;
241 greg 1.1 /* load auxiliary files */
242 greg 1.5 if (m->otype == MAT_PDATA || m->otype == MAT_MDATA
243     || m->otype == MAT_TDATA) {
244 greg 1.1 nd.dp = getdata(m->oargs.sarg[1]);
245     for (i = 3; i < m->oargs.nsargs; i++)
246     if (m->oargs.sarg[i][0] == '-')
247     break;
248     if (i-3 != nd.dp->nd)
249     objerror(m, USER, "dimension error");
250     if (!fundefined(m->oargs.sarg[3]))
251     loadfunc(m->oargs.sarg[2]);
252 greg 1.5 } else if (m->otype == MAT_BRTDF) {
253     nd.dp = NULL;
254     if (!fundefined(m->oargs.sarg[7]))
255     loadfunc(m->oargs.sarg[9]);
256 greg 1.1 } else {
257     nd.dp = NULL;
258     if (!fundefined(m->oargs.sarg[0]))
259     loadfunc(m->oargs.sarg[1]);
260     }
261 greg 1.5 /* set special variables */
262     setfunc(m, r);
263     multv3(vec, nd.pnorm, funcxf.xfm);
264     varset("NxP", '=', vec[0]/funcxf.sca);
265     varset("NyP", '=', vec[1]/funcxf.sca);
266     varset("NzP", '=', vec[2]/funcxf.sca);
267     varset("RdotP", '=', nd.pdot);
268     varset("CrP", '=', colval(nd.mcolor,RED));
269     varset("CgP", '=', colval(nd.mcolor,GRN));
270     varset("CbP", '=', colval(nd.mcolor,BLU));
271     /* compute transmitted ray */
272     if (m->otype == MAT_BRTDF && nd.tspec > FTINY) {
273     RAY sr;
274     errno = 0;
275     setcolor(ctmp, varvalue(m->oargs.sarg[0]),
276     varvalue(m->oargs.sarg[1]),
277     varvalue(m->oargs.sarg[2]));
278     scalecolor(ctmp, nd.tspec);
279     if (errno)
280     objerror(m, WARNING, "compute error");
281     else if ((dtmp = bright(ctmp)) > FTINY &&
282     rayorigin(&sr, r, TRANS, dtmp) == 0) {
283 greg 1.7 if (DOT(r->pert,r->pert) > FTINY*FTINY) {
284     for (i = 0; i < 3; i++) /* perturb direction */
285     sr.rdir[i] = r->rdir[i] -
286     .75*r->pert[i];
287     normalize(sr.rdir);
288 greg 1.8 } else {
289     VCOPY(sr.rdir, r->rdir);
290 greg 1.7 transtest = 2;
291 greg 1.8 }
292 greg 1.5 rayvalue(&sr);
293     multcolor(sr.rcol, ctmp);
294     addcolor(r->rcol, sr.rcol);
295 greg 1.7 transtest *= bright(sr.rcol);
296     transdist = r->rot + sr.rt;
297 greg 1.5 }
298     }
299     if (r->crtype & SHADOW) /* the rest is shadow */
300     return;
301     /* compute reflected ray */
302 greg 1.6 if (m->otype == MAT_BRTDF && nd.rspec > FTINY) {
303     RAY sr;
304     errno = 0;
305     setcolor(ctmp, varvalue(m->oargs.sarg[3]),
306     varvalue(m->oargs.sarg[4]),
307     varvalue(m->oargs.sarg[5]));
308     scalecolor(ctmp, nd.rspec);
309     if (errno)
310     objerror(m, WARNING, "compute error");
311     else if ((dtmp = bright(ctmp)) > FTINY &&
312 greg 1.5 rayorigin(&sr, r, REFLECTED, dtmp) == 0) {
313 greg 1.6 for (i = 0; i < 3; i++)
314     sr.rdir[i] = r->rdir[i] +
315 greg 1.5 2.0*nd.pdot*nd.pnorm[i];
316 greg 1.6 rayvalue(&sr);
317     multcolor(sr.rcol, ctmp);
318     addcolor(r->rcol, sr.rcol);
319 greg 1.5 }
320 greg 1.1 }
321     /* compute ambient */
322     if (nd.rdiff > FTINY) {
323     ambient(ctmp, r);
324 greg 1.5 if (m->otype == MAT_BRTDF)
325     scalecolor(ctmp, nd.rdiff);
326     else
327     scalecolor(ctmp, 1.0-nd.trans);
328 greg 1.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
329     addcolor(r->rcol, ctmp); /* add to returned color */
330 greg 1.5 }
331     if (nd.tdiff > FTINY) { /* from other side */
332     flipsurface(r);
333     ambient(ctmp, r);
334     if (m->otype == MAT_BRTDF)
335     scalecolor(ctmp, nd.tdiff);
336     else
337     scalecolor(ctmp, nd.trans);
338     multcolor(ctmp, nd.mcolor);
339     addcolor(r->rcol, ctmp);
340     flipsurface(r);
341 greg 1.1 }
342     /* add direct component */
343     direct(r, dirbrdf, &nd);
344 greg 1.7 /* check distance */
345     if (transtest > bright(r->rcol))
346     r->rt = transdist;
347 greg 1.1 }