ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_brdf.c
Revision: 1.5
Committed: Tue May 7 17:19:52 1991 UTC (32 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.4: +212 -54 lines
Log Message:
added MAT_TFUNC, MAT_TDATA and MAT_BRTDF types

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1990 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Shading for materials with arbitrary BRDF's
9     */
10    
11     #include "ray.h"
12    
13     #include "data.h"
14    
15     #include "otypes.h"
16    
17     /*
18     * Arguments to this material include the color and specularity.
19     * String arguments include the reflection function and files.
20     * The BRDF is currently used just for the specular component to light
21     * sources. Reflectance values or data coordinates are functions
22     * of the direction to the light source.
23     * We orient the surface towards the incoming ray, so a single
24     * surface can be used to represent an infinitely thin object.
25     *
26     * Arguments for MAT_PFUNC and MAT_MFUNC are:
27 greg 1.4 * 2+ func funcfile transform
28 greg 1.1 * 0
29 greg 1.4 * 4+ red grn blu specularity A5 ..
30 greg 1.1 *
31     * Arguments for MAT_PDATA and MAT_MDATA are:
32 greg 1.4 * 4+ func datafile funcfile v0 .. transform
33 greg 1.1 * 0
34 greg 1.4 * 4+ red grn blu specularity A5 ..
35 greg 1.5 *
36     * Arguments for MAT_TFUNC are:
37     * 2+ func funcfile transform
38     * 0
39     * 4+ red grn blu rspec trans tspec A7 ..
40     *
41     * Arguments for MAT_TDATA are:
42     * 4+ func datafile funcfile v0 .. transform
43     * 0
44     * 4+ red grn blu rspec trans tspec A7 ..
45     *
46     * Arguments for the more general MAT_BRTDF are:
47     * 10+ rrefl grefl brefl
48     * rtrns gtrns btrns
49     * rbrtd gbrtd bbrtd
50     * funcfile transform
51     * 0
52     * 6+ red grn blu rspec trans tspec A7 ..
53     *
54     * In addition to the normal variables available to functions,
55     * we define the following:
56     * NxP, NyP, NzP - perturbed surface normal
57     * RdotP - perturbed ray dot product
58     * CrP, CgP, CbP - perturbed material color
59 greg 1.1 */
60    
61 greg 1.2 extern double funvalue(), varvalue();
62 greg 1.5 extern XF funcxf;
63 greg 1.2
64 greg 1.1 typedef struct {
65     OBJREC *mp; /* material pointer */
66     RAY *pr; /* intersected ray */
67 greg 1.5 DATARRAY *dp; /* data array for PDATA, MDATA or TDATA */
68 greg 1.1 COLOR mcolor; /* color of this material */
69 greg 1.5 COLOR scolor; /* color of specular reflection */
70 greg 1.1 double rspec; /* specular reflection */
71     double rdiff; /* diffuse reflection */
72 greg 1.5 double trans; /* transmissivity */
73     double tspec; /* specular transmission */
74     double tdiff; /* diffuse transmission */
75 greg 1.1 FVECT pnorm; /* perturbed surface normal */
76     double pdot; /* perturbed dot product */
77     } BRDFDAT; /* BRDF material data */
78    
79    
80     dirbrdf(cval, np, ldir, omega) /* compute source contribution */
81     COLOR cval; /* returned coefficient */
82     register BRDFDAT *np; /* material data */
83     FVECT ldir; /* light source direction */
84     double omega; /* light source size */
85     {
86     double ldot;
87     double dtmp;
88     COLOR ctmp;
89 greg 1.4 FVECT ldx;
90 greg 1.1 double pt[MAXDIM];
91 greg 1.5 register char **sa;
92 greg 1.1 register int i;
93    
94     setcolor(cval, 0.0, 0.0, 0.0);
95    
96     ldot = DOT(np->pnorm, ldir);
97    
98 greg 1.5 if (ldot <= FTINY && ldot >= -FTINY)
99     return; /* too close to grazing */
100     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
101 greg 1.1 return; /* wrong side */
102    
103 greg 1.5 if (ldot > 0.0 && np->rdiff > FTINY) {
104 greg 1.1 /*
105     * Compute and add diffuse reflected component to returned
106     * color. The diffuse reflected component will always be
107     * modified by the color of the material.
108     */
109     copycolor(ctmp, np->mcolor);
110     dtmp = ldot * omega * np->rdiff / PI;
111     scalecolor(ctmp, dtmp);
112     addcolor(cval, ctmp);
113     }
114 greg 1.5 if (ldot < 0.0 && np->tdiff > FTINY) {
115 greg 1.1 /*
116 greg 1.5 * Diffuse transmitted component.
117 greg 1.1 */
118 greg 1.5 copycolor(ctmp, np->mcolor);
119     dtmp = -ldot * omega * np->tdiff / PI;
120     scalecolor(ctmp, dtmp);
121     addcolor(cval, ctmp);
122 greg 1.1 }
123 greg 1.5 if (ldot > 0.0 ? np->rspec <= FTINY : np->tspec <= FTINY)
124     return; /* no specular component */
125     /* set up function */
126     setfunc(np->mp, np->pr);
127     sa = np->mp->oargs.sarg;
128     errno = 0;
129     /* transform light vector */
130     multv3(ldx, ldir, funcxf.xfm);
131     for (i = 0; i < 3; i++)
132     ldx[i] /= funcxf.sca;
133     /* compute BRTDF */
134     if (np->mp->otype == MAT_BRTDF) {
135     colval(ctmp,RED) = funvalue(sa[6], 3, ldx);
136     if (sa[7] == sa[6])
137     colval(ctmp,GRN) = colval(ctmp,RED);
138     else
139     colval(ctmp,GRN) = funvalue(sa[7], 3, ldx);
140     if (sa[8] == sa[6])
141     colval(ctmp,BLU) = colval(ctmp,RED);
142     else if (sa[8] == sa[7])
143     colval(ctmp,BLU) = colval(ctmp,GRN);
144     else
145     colval(ctmp,BLU) = funvalue(sa[8], 3, ldx);
146     dtmp = bright(ctmp);
147     } else if (np->dp == NULL) {
148     dtmp = funvalue(sa[0], 3, ldx);
149     setcolor(ctmp, dtmp, dtmp, dtmp);
150     } else {
151     for (i = 0; i < np->dp->nd; i++)
152     pt[i] = funvalue(sa[3+i], 3, ldx);
153     dtmp = datavalue(np->dp, pt);
154     dtmp = funvalue(sa[0], 1, &dtmp);
155     setcolor(ctmp, dtmp, dtmp, dtmp);
156     }
157     if (errno)
158     goto computerr;
159     if (dtmp <= FTINY)
160     return;
161     if (ldot > 0.0) {
162     /*
163     * Compute reflected non-diffuse component.
164     */
165     multcolor(ctmp, np->scolor);
166     dtmp = ldot * omega;
167     scalecolor(ctmp, dtmp);
168     addcolor(cval, ctmp);
169     } else {
170     /*
171     * Compute transmitted non-diffuse component.
172     */
173     dtmp = -ldot * omega * np->tspec;
174     scalecolor(ctmp, dtmp);
175     addcolor(cval, ctmp);
176     }
177 greg 1.1 return;
178     computerr:
179     objerror(np->mp, WARNING, "compute error");
180     return;
181     }
182    
183    
184     m_brdf(m, r) /* color a ray which hit a BRDF material */
185     register OBJREC *m;
186     register RAY *r;
187     {
188 greg 1.5 int minsa, minfa;
189 greg 1.1 BRDFDAT nd;
190     COLOR ctmp;
191 greg 1.5 double dtmp;
192     FVECT vec;
193 greg 1.1 register int i;
194 greg 1.5 /* check arguments */
195     switch (m->otype) {
196     case MAT_PFUNC: case MAT_MFUNC:
197     minsa = 2; minfa = 4; break;
198     case MAT_PDATA: case MAT_MDATA:
199     minsa = 4; minfa = 4; break;
200     case MAT_TFUNC:
201     minsa = 2; minfa = 6; break;
202     case MAT_TDATA:
203     minsa = 4; minfa = 6; break;
204     case MAT_BRTDF:
205     minsa = 10; minfa = 6; break;
206     }
207     if (m->oargs.nsargs < minsa || m->oargs.nfargs < minfa)
208 greg 1.1 objerror(m, USER, "bad # arguments");
209     nd.mp = m;
210     nd.pr = r;
211 greg 1.5 /* get specular component */
212     nd.rspec = m->oargs.farg[3];
213     /* compute transmission */
214     if (m->otype == MAT_TFUNC || m->otype == MAT_TDATA
215     || m->otype == MAT_BRTDF) {
216     nd.trans = m->oargs.farg[4]*(1.0 - nd.rspec);
217     nd.tspec = nd.trans * m->oargs.farg[5];
218     nd.tdiff = nd.trans - nd.tspec;
219     } else
220     nd.tdiff = nd.tspec = nd.trans = 0.0;
221     /* early shadow check */
222     if (r->crtype & SHADOW && (m->otype != MAT_BRTDF || nd.tspec <= FTINY))
223     return;
224     /* diffuse reflection */
225     nd.rdiff = 1.0 - nd.trans - nd.rspec;
226     /* get material color */
227     setcolor(nd.mcolor, m->oargs.farg[0],
228     m->oargs.farg[1],
229     m->oargs.farg[2]);
230     /* fix orientation */
231     if (r->rod < 0.0)
232     flipsurface(r);
233     /* get modifiers */
234     raytexture(r, m->omod);
235     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
236     multcolor(nd.mcolor, r->pcol); /* modify material color */
237     r->rt = r->rot; /* default ray length */
238 greg 1.1 /* load auxiliary files */
239 greg 1.5 if (m->otype == MAT_PDATA || m->otype == MAT_MDATA
240     || m->otype == MAT_TDATA) {
241 greg 1.1 nd.dp = getdata(m->oargs.sarg[1]);
242     for (i = 3; i < m->oargs.nsargs; i++)
243     if (m->oargs.sarg[i][0] == '-')
244     break;
245     if (i-3 != nd.dp->nd)
246     objerror(m, USER, "dimension error");
247     if (!fundefined(m->oargs.sarg[3]))
248     loadfunc(m->oargs.sarg[2]);
249 greg 1.5 } else if (m->otype == MAT_BRTDF) {
250     nd.dp = NULL;
251     if (!fundefined(m->oargs.sarg[7]))
252     loadfunc(m->oargs.sarg[9]);
253 greg 1.1 } else {
254     nd.dp = NULL;
255     if (!fundefined(m->oargs.sarg[0]))
256     loadfunc(m->oargs.sarg[1]);
257     }
258 greg 1.5 /* set special variables */
259     setfunc(m, r);
260     multv3(vec, nd.pnorm, funcxf.xfm);
261     varset("NxP", '=', vec[0]/funcxf.sca);
262     varset("NyP", '=', vec[1]/funcxf.sca);
263     varset("NzP", '=', vec[2]/funcxf.sca);
264     varset("RdotP", '=', nd.pdot);
265     varset("CrP", '=', colval(nd.mcolor,RED));
266     varset("CgP", '=', colval(nd.mcolor,GRN));
267     varset("CbP", '=', colval(nd.mcolor,BLU));
268     /* compute transmitted ray */
269     if (m->otype == MAT_BRTDF && nd.tspec > FTINY) {
270     RAY sr;
271     errno = 0;
272     setcolor(ctmp, varvalue(m->oargs.sarg[0]),
273     varvalue(m->oargs.sarg[1]),
274     varvalue(m->oargs.sarg[2]));
275     scalecolor(ctmp, nd.tspec);
276     if (errno)
277     objerror(m, WARNING, "compute error");
278     else if ((dtmp = bright(ctmp)) > FTINY &&
279     rayorigin(&sr, r, TRANS, dtmp) == 0) {
280     VCOPY(sr.rdir, r->rdir);
281     rayvalue(&sr);
282     multcolor(sr.rcol, ctmp);
283     addcolor(r->rcol, sr.rcol);
284     if (dtmp > .5)
285     r->rt = r->rot + sr.rt;
286     }
287     }
288     if (r->crtype & SHADOW) /* the rest is shadow */
289     return;
290 greg 1.1 if (nd.rspec > FTINY) { /* has specular component */
291     /* compute specular color */
292     if (m->otype == MAT_MFUNC || m->otype == MAT_MDATA)
293     copycolor(nd.scolor, nd.mcolor);
294     else
295     setcolor(nd.scolor, 1.0, 1.0, 1.0);
296     scalecolor(nd.scolor, nd.rspec);
297 greg 1.5 /* compute reflected ray */
298     if (m->otype == MAT_BRTDF) {
299     RAY sr;
300     errno = 0;
301     setcolor(ctmp, varvalue(m->oargs.sarg[3]),
302     varvalue(m->oargs.sarg[4]),
303     varvalue(m->oargs.sarg[5]));
304     scalecolor(ctmp, nd.rspec);
305     if (errno)
306     objerror(m, WARNING, "compute error");
307     else if ((dtmp = bright(ctmp)) > FTINY &&
308     rayorigin(&sr, r, REFLECTED, dtmp) == 0) {
309     for (i = 0; i < 3; i++)
310     sr.rdir[i] = r->rdir[i] +
311     2.0*nd.pdot*nd.pnorm[i];
312     rayvalue(&sr);
313     multcolor(sr.rcol, ctmp);
314     addcolor(r->rcol, sr.rcol);
315     }
316     }
317 greg 1.1 }
318     /* compute ambient */
319     if (nd.rdiff > FTINY) {
320     ambient(ctmp, r);
321 greg 1.5 if (m->otype == MAT_BRTDF)
322     scalecolor(ctmp, nd.rdiff);
323     else
324     scalecolor(ctmp, 1.0-nd.trans);
325 greg 1.1 multcolor(ctmp, nd.mcolor); /* modified by material color */
326     addcolor(r->rcol, ctmp); /* add to returned color */
327 greg 1.5 }
328     if (nd.tdiff > FTINY) { /* from other side */
329     flipsurface(r);
330     ambient(ctmp, r);
331     if (m->otype == MAT_BRTDF)
332     scalecolor(ctmp, nd.tdiff);
333     else
334     scalecolor(ctmp, nd.trans);
335     multcolor(ctmp, nd.mcolor);
336     addcolor(r->rcol, ctmp);
337     flipsurface(r);
338 greg 1.1 }
339     /* add direct component */
340     direct(r, dirbrdf, &nd);
341     }