ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/glass.c
Revision: 2.29
Committed: Wed Nov 15 18:02:52 2023 UTC (5 months, 2 weeks ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.28: +20 -16 lines
Log Message:
feat(rpict,rtrace,rcontrib,rtpict): Hyperspectral rendering (except photon map)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: glass.c,v 2.28 2019/04/19 19:01:32 greg Exp $";
3 #endif
4 /*
5 * glass.c - simpler shading function for thin glass surfaces.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "rtotypes.h"
13 #include "pmapmat.h"
14
15 /*
16 * This definition of glass provides for a quick calculation
17 * using a single surface where two closely spaced parallel
18 * dielectric surfaces would otherwise be used. The chief
19 * advantage to using this material is speed, since internal
20 * reflections are avoided.
21 *
22 * The specification for glass is as follows:
23 *
24 * modifier glass id
25 * 0
26 * 0
27 * 3+ red grn blu [refractive_index]
28 *
29 * The color is used for the transmission at normal incidence.
30 * To compute transmissivity (tn) from transmittance (Tn) use:
31 *
32 * tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
33 *
34 * The transmissivity of standard 88% transmittance glass is 0.96.
35 * A refractive index other than the default can be used by giving
36 * it as the fourth real argument. The above formula no longer applies.
37 *
38 * If we appear to hit the back side of the surface, then we
39 * turn the normal around.
40 */
41
42 #define RINDEX 1.52 /* refractive index of glass */
43
44
45 int
46 m_glass( /* color a ray which hit a thin glass surface */
47 OBJREC *m,
48 RAY *r
49 )
50 {
51 COLOR mcolor;
52 SCOLOR scoef;
53 double ctemp[3];
54 double pdot;
55 FVECT pnorm;
56 double rindex=0, cos2;
57 int hastexture, hastrans;
58 double d, r1e, r1m;
59 RAY p;
60 int i;
61
62 /* PMAP: skip refracted shadow or ambient ray if accounted for in
63 photon map */
64 if (shadowRayInPmap(r) || ambRayInPmap(r))
65 return(1);
66 /* check arguments */
67 if (m->oargs.nfargs == 3)
68 rindex = RINDEX; /* default value of n */
69 else if (m->oargs.nfargs == 4)
70 rindex = m->oargs.farg[3]; /* use their value */
71 else
72 objerror(m, USER, "bad arguments");
73 /* check back face visibility */
74 if (!backvis && r->rod <= 0.0) {
75 raytrans(r);
76 return(1);
77 }
78 /* check transmission */
79 setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]);
80 if ((hastrans = (intens(mcolor) > 1e-15))) {
81 for (i = 0; i < 3; i++)
82 if (colval(mcolor,i) < 1e-15)
83 colval(mcolor,i) = 1e-15;
84 } else if (r->crtype & SHADOW)
85 return(1);
86 /* get modifiers */
87 raytexture(r, m->omod);
88 if (r->rod < 0.0) /* reorient if necessary */
89 flipsurface(r);
90 /* perturb normal */
91 hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY);
92 if (hastexture) {
93 pdot = raynormal(pnorm, r);
94 } else {
95 VCOPY(pnorm, r->ron);
96 pdot = r->rod;
97 }
98 /* angular transmission */
99 cos2 = sqrt( (1.0-1.0/(rindex*rindex)) +
100 pdot*pdot/(rindex*rindex) );
101 if (hastrans)
102 setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2),
103 pow(colval(mcolor,GRN), 1.0/cos2),
104 pow(colval(mcolor,BLU), 1.0/cos2));
105
106 /* compute reflection */
107 r1e = (pdot - rindex*cos2) / (pdot + rindex*cos2);
108 r1e *= r1e;
109 r1m = (1.0/pdot - rindex/cos2) / (1.0/pdot + rindex/cos2);
110 r1m *= r1m;
111 /* compute transmission */
112 if (hastrans) {
113 for (i = 0; i < 3; i++) {
114 d = colval(mcolor, i);
115 ctemp[i] = .5*(1.0-r1e)*(1.0-r1e)*d /
116 (1.0-r1e*r1e*d*d) +
117 .5*(1.0-r1m)*(1.0-r1m)*d /
118 (1.0-r1m*r1m*d*d);
119 }
120 setscolor(scoef, ctemp[RED], ctemp[GRN], ctemp[BLU]);
121 smultscolor(scoef, r->pcol); /* modify by pattern */
122 /* transmitted ray */
123 if (rayorigin(&p, TRANS, r, scoef) == 0) {
124 if (!(r->crtype & (SHADOW|AMBIENT)) && hastexture) {
125 VSUM(p.rdir, r->rdir, r->pert, 2.*(1.-rindex));
126 if (normalize(p.rdir) == 0.0) {
127 objerror(m, WARNING, "bad perturbation");
128 VCOPY(p.rdir, r->rdir);
129 }
130 } else {
131 VCOPY(p.rdir, r->rdir);
132 }
133 rayvalue(&p);
134 smultscolor(p.rcol, p.rcoef);
135 saddscolor(r->rcol, p.rcol);
136 if (!hastexture || r->crtype & (SHADOW|AMBIENT))
137 r->rxt = r->rot + raydistance(&p);
138 }
139 }
140 if (r->crtype & SHADOW) /* skip reflected ray */
141 return(1);
142 /* compute reflectance */
143 for (i = 0; i < 3; i++) {
144 d = colval(mcolor, i);
145 d *= d;
146 ctemp[i] = .5*r1e*(1.0+(1.0-2.0*r1e)*d)/(1.0-r1e*r1e*d) +
147 .5*r1m*(1.0+(1.0-2.0*r1m)*d)/(1.0-r1m*r1m*d);
148 }
149 setscolor(scoef, ctemp[RED], ctemp[GRN], ctemp[BLU]);
150 /* reflected ray */
151 if (rayorigin(&p, REFLECTED, r, scoef) == 0) {
152 VSUM(p.rdir, r->rdir, pnorm, 2.*pdot);
153 checknorm(p.rdir);
154 rayvalue(&p);
155 smultscolor(p.rcol, p.rcoef);
156 copyscolor(r->mcol, p.rcol);
157 saddscolor(r->rcol, p.rcol);
158 r->rmt = r->rot;
159 if (r->ro != NULL && isflat(r->ro->otype) &&
160 !hastexture | (r->crtype & AMBIENT))
161 r->rmt += raydistance(&p);
162 }
163 return(1);
164 }