ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/glass.c
Revision: 2.28
Committed: Fri Apr 19 19:01:32 2019 UTC (5 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, rad5R3
Changes since 2.27: +3 -2 lines
Log Message:
Make sure reflected ray distance is not infinite if there's a reflection

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: glass.c,v 2.27 2018/11/13 19:58:33 greg Exp $";
3 #endif
4 /*
5 * glass.c - simpler shading function for thin glass surfaces.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "rtotypes.h"
13 #include "pmapmat.h"
14
15 /*
16 * This definition of glass provides for a quick calculation
17 * using a single surface where two closely spaced parallel
18 * dielectric surfaces would otherwise be used. The chief
19 * advantage to using this material is speed, since internal
20 * reflections are avoided.
21 *
22 * The specification for glass is as follows:
23 *
24 * modifier glass id
25 * 0
26 * 0
27 * 3+ red grn blu [refractive_index]
28 *
29 * The color is used for the transmission at normal incidence.
30 * To compute transmissivity (tn) from transmittance (Tn) use:
31 *
32 * tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
33 *
34 * The transmissivity of standard 88% transmittance glass is 0.96.
35 * A refractive index other than the default can be used by giving
36 * it as the fourth real argument. The above formula no longer applies.
37 *
38 * If we appear to hit the back side of the surface, then we
39 * turn the normal around.
40 */
41
42 #define RINDEX 1.52 /* refractive index of glass */
43
44
45 int
46 m_glass( /* color a ray which hit a thin glass surface */
47 OBJREC *m,
48 RAY *r
49 )
50 {
51 COLOR mcolor;
52 double pdot;
53 FVECT pnorm;
54 double rindex=0, cos2;
55 COLOR trans, refl;
56 int hastexture, hastrans;
57 double d, r1e, r1m;
58 RAY p;
59 int i;
60
61 /* PMAP: skip refracted shadow or ambient ray if accounted for in
62 photon map */
63 if (shadowRayInPmap(r) || ambRayInPmap(r))
64 return(1);
65 /* check arguments */
66 if (m->oargs.nfargs == 3)
67 rindex = RINDEX; /* default value of n */
68 else if (m->oargs.nfargs == 4)
69 rindex = m->oargs.farg[3]; /* use their value */
70 else
71 objerror(m, USER, "bad arguments");
72 /* check back face visibility */
73 if (!backvis && r->rod <= 0.0) {
74 raytrans(r);
75 return(1);
76 }
77 /* check transmission */
78 setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]);
79 if ((hastrans = (intens(mcolor) > 1e-15))) {
80 for (i = 0; i < 3; i++)
81 if (colval(mcolor,i) < 1e-15)
82 colval(mcolor,i) = 1e-15;
83 } else if (r->crtype & SHADOW)
84 return(1);
85 /* get modifiers */
86 raytexture(r, m->omod);
87 if (r->rod < 0.0) /* reorient if necessary */
88 flipsurface(r);
89 /* perturb normal */
90 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
91 pdot = raynormal(pnorm, r);
92 } else {
93 VCOPY(pnorm, r->ron);
94 pdot = r->rod;
95 }
96 /* angular transmission */
97 cos2 = sqrt( (1.0-1.0/(rindex*rindex)) +
98 pdot*pdot/(rindex*rindex) );
99 if (hastrans)
100 setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2),
101 pow(colval(mcolor,GRN), 1.0/cos2),
102 pow(colval(mcolor,BLU), 1.0/cos2));
103
104 /* compute reflection */
105 r1e = (pdot - rindex*cos2) / (pdot + rindex*cos2);
106 r1e *= r1e;
107 r1m = (1.0/pdot - rindex/cos2) / (1.0/pdot + rindex/cos2);
108 r1m *= r1m;
109 /* compute transmission */
110 if (hastrans) {
111 for (i = 0; i < 3; i++) {
112 d = colval(mcolor, i);
113 colval(trans,i) = .5*(1.0-r1e)*(1.0-r1e)*d /
114 (1.0-r1e*r1e*d*d);
115 colval(trans,i) += .5*(1.0-r1m)*(1.0-r1m)*d /
116 (1.0-r1m*r1m*d*d);
117 }
118 multcolor(trans, r->pcol); /* modify by pattern */
119 /* transmitted ray */
120 if (rayorigin(&p, TRANS, r, trans) == 0) {
121 if (!(r->crtype & (SHADOW|AMBIENT)) && hastexture) {
122 VSUM(p.rdir, r->rdir, r->pert, 2.*(1.-rindex));
123 if (normalize(p.rdir) == 0.0) {
124 objerror(m, WARNING, "bad perturbation");
125 VCOPY(p.rdir, r->rdir);
126 }
127 } else {
128 VCOPY(p.rdir, r->rdir);
129 }
130 rayvalue(&p);
131 multcolor(p.rcol, p.rcoef);
132 addcolor(r->rcol, p.rcol);
133 if (!hastexture || r->crtype & (SHADOW|AMBIENT))
134 r->rxt = r->rot + raydistance(&p);
135 }
136 }
137 if (r->crtype & SHADOW) /* skip reflected ray */
138 return(1);
139 /* compute reflectance */
140 for (i = 0; i < 3; i++) {
141 d = colval(mcolor, i);
142 d *= d;
143 colval(refl,i) = .5*r1e*(1.0+(1.0-2.0*r1e)*d)/(1.0-r1e*r1e*d);
144 colval(refl,i) += .5*r1m*(1.0+(1.0-2.0*r1m)*d)/(1.0-r1m*r1m*d);
145 }
146 /* reflected ray */
147 if (rayorigin(&p, REFLECTED, r, refl) == 0) {
148 VSUM(p.rdir, r->rdir, pnorm, 2.*pdot);
149 checknorm(p.rdir);
150 rayvalue(&p);
151 multcolor(p.rcol, p.rcoef);
152 copycolor(r->mcol, p.rcol);
153 addcolor(r->rcol, p.rcol);
154 r->rmt = r->rot;
155 if (r->ro != NULL && isflat(r->ro->otype) &&
156 !hastexture | (r->crtype & AMBIENT))
157 r->rmt += raydistance(&p);
158 }
159 return(1);
160 }