ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/glass.c
Revision: 2.26
Committed: Wed Oct 28 15:45:58 2015 UTC (8 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2, rad5R1
Changes since 2.25: +2 -2 lines
Log Message:
Added back ambient ray testing for photon map, which is needed by rcontrib

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: glass.c,v 2.25 2015/05/21 13:54:59 greg Exp $";
3 #endif
4 /*
5 * glass.c - simpler shading function for thin glass surfaces.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "rtotypes.h"
13 #include "pmapmat.h"
14
15 /*
16 * This definition of glass provides for a quick calculation
17 * using a single surface where two closely spaced parallel
18 * dielectric surfaces would otherwise be used. The chief
19 * advantage to using this material is speed, since internal
20 * reflections are avoided.
21 *
22 * The specification for glass is as follows:
23 *
24 * modifier glass id
25 * 0
26 * 0
27 * 3+ red grn blu [refractive_index]
28 *
29 * The color is used for the transmission at normal incidence.
30 * To compute transmissivity (tn) from transmittance (Tn) use:
31 *
32 * tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
33 *
34 * The transmissivity of standard 88% transmittance glass is 0.96.
35 * A refractive index other than the default can be used by giving
36 * it as the fourth real argument. The above formula no longer applies.
37 *
38 * If we appear to hit the back side of the surface, then we
39 * turn the normal around.
40 */
41
42 #define RINDEX 1.52 /* refractive index of glass */
43
44
45 int
46 m_glass( /* color a ray which hit a thin glass surface */
47 OBJREC *m,
48 RAY *r
49 )
50 {
51 COLOR mcolor;
52 double pdot;
53 FVECT pnorm;
54 double rindex=0, cos2;
55 COLOR trans, refl;
56 int hastexture, hastrans;
57 double d, r1e, r1m;
58 double transtest, transdist;
59 double mirtest, mirdist;
60 RAY p;
61 int i;
62
63 /* PMAP: skip refracted shadow or ambient ray if accounted for in
64 photon map */
65 if (shadowRayInPmap(r) || ambRayInPmap(r))
66 return(1);
67 /* check arguments */
68 if (m->oargs.nfargs == 3)
69 rindex = RINDEX; /* default value of n */
70 else if (m->oargs.nfargs == 4)
71 rindex = m->oargs.farg[3]; /* use their value */
72 else
73 objerror(m, USER, "bad arguments");
74 /* check back face visibility */
75 if (!backvis && r->rod <= 0.0) {
76 raytrans(r);
77 return(1);
78 }
79 /* check transmission */
80 setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]);
81 if ((hastrans = (intens(mcolor) > 1e-15))) {
82 for (i = 0; i < 3; i++)
83 if (colval(mcolor,i) < 1e-15)
84 colval(mcolor,i) = 1e-15;
85 } else if (r->crtype & SHADOW)
86 return(1);
87 /* get modifiers */
88 raytexture(r, m->omod);
89 if (r->rod < 0.0) /* reorient if necessary */
90 flipsurface(r);
91 mirtest = transtest = 0;
92 mirdist = transdist = r->rot;
93 /* perturb normal */
94 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
95 pdot = raynormal(pnorm, r);
96 } else {
97 VCOPY(pnorm, r->ron);
98 pdot = r->rod;
99 }
100 /* angular transmission */
101 cos2 = sqrt( (1.0-1.0/(rindex*rindex)) +
102 pdot*pdot/(rindex*rindex) );
103 if (hastrans)
104 setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2),
105 pow(colval(mcolor,GRN), 1.0/cos2),
106 pow(colval(mcolor,BLU), 1.0/cos2));
107
108 /* compute reflection */
109 r1e = (pdot - rindex*cos2) / (pdot + rindex*cos2);
110 r1e *= r1e;
111 r1m = (1.0/pdot - rindex/cos2) / (1.0/pdot + rindex/cos2);
112 r1m *= r1m;
113 /* compute transmission */
114 if (hastrans) {
115 for (i = 0; i < 3; i++) {
116 d = colval(mcolor, i);
117 colval(trans,i) = .5*(1.0-r1e)*(1.0-r1e)*d /
118 (1.0-r1e*r1e*d*d);
119 colval(trans,i) += .5*(1.0-r1m)*(1.0-r1m)*d /
120 (1.0-r1m*r1m*d*d);
121 }
122 multcolor(trans, r->pcol); /* modify by pattern */
123 /* transmitted ray */
124 if (rayorigin(&p, TRANS, r, trans) == 0) {
125 if (!(r->crtype & (SHADOW|AMBIENT)) && hastexture) {
126 VSUM(p.rdir, r->rdir, r->pert, 2.*(1.-rindex));
127 if (normalize(p.rdir) == 0.0) {
128 objerror(m, WARNING, "bad perturbation");
129 VCOPY(p.rdir, r->rdir);
130 }
131 } else {
132 VCOPY(p.rdir, r->rdir);
133 transtest = 2;
134 }
135 rayvalue(&p);
136 multcolor(p.rcol, p.rcoef);
137 addcolor(r->rcol, p.rcol);
138 transtest *= bright(p.rcol);
139 transdist = r->rot + p.rt;
140 }
141 }
142 if (r->crtype & SHADOW) { /* skip reflected ray */
143 r->rt = transdist;
144 return(1);
145 }
146 /* compute reflectance */
147 for (i = 0; i < 3; i++) {
148 d = colval(mcolor, i);
149 d *= d;
150 colval(refl,i) = .5*r1e*(1.0+(1.0-2.0*r1e)*d)/(1.0-r1e*r1e*d);
151 colval(refl,i) += .5*r1m*(1.0+(1.0-2.0*r1m)*d)/(1.0-r1m*r1m*d);
152 }
153 /* reflected ray */
154 if (rayorigin(&p, REFLECTED, r, refl) == 0) {
155 VSUM(p.rdir, r->rdir, pnorm, 2.*pdot);
156 checknorm(p.rdir);
157 rayvalue(&p);
158 multcolor(p.rcol, p.rcoef);
159 addcolor(r->rcol, p.rcol);
160 if (r->ro != NULL && isflat(r->ro->otype) &&
161 !hastexture | (r->crtype & AMBIENT)) {
162 mirtest = 2.0*bright(p.rcol);
163 mirdist = r->rot + p.rt;
164 }
165 }
166 /* check distance */
167 d = bright(r->rcol);
168 if (transtest > d)
169 r->rt = transdist;
170 else if (mirtest > d)
171 r->rt = mirdist;
172 return(1);
173 }