/* Copyright (c) 1991 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * glass.c - simpler shading function for thin glass surfaces. * * 11/14/86 */ #include "ray.h" /* * This definition of glass provides for a quick calculation * using a single surface where two closely spaced parallel * dielectric surfaces would otherwise be used. The chief * advantage to using this material is speed, since internal * reflections are avoided. * * The specification for glass is as follows: * * modifier glass id * 0 * 0 * 3 red grn blu * * The color is used for the transmission at normal incidence. * To compute transmission (tn) from transmissivity (Tn) use: * * tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn * * The transmission of standard 88% transmissivity glass is 0.96. * A refractive index other than the default can be used by giving * it as the fourth real argument. The above formula no longer applies. * * If we appear to hit the back side of the surface, then we * turn the normal around. */ #define RINDEX 1.52 /* refractive index of glass */ m_glass(m, r) /* color a ray which hit a thin glass surface */ OBJREC *m; register RAY *r; { double sqrt(), pow(); COLOR mcolor; double pdot; FVECT pnorm; double rindex, cos2; COLOR trans, refl; double d, r1e, r1m; double transtest, transdist; RAY p; register int i; /* check arguments */ if (m->oargs.nfargs == 3) rindex = RINDEX; /* default value of n */ else if (m->oargs.nfargs == 4) rindex = m->oargs.farg[3]; /* use their value */ else objerror(m, USER, "bad arguments"); setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); if (r->rod < 0.0) /* reorient if necessary */ flipsurface(r); transtest = 0; /* get modifiers */ raytexture(r, m->omod); pdot = raynormal(pnorm, r); /* angular transmission */ cos2 = sqrt( (1.0-1.0/(rindex*rindex)) + pdot*pdot/(rindex*rindex) ); setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2), pow(colval(mcolor,GRN), 1.0/cos2), pow(colval(mcolor,BLU), 1.0/cos2)); /* compute reflection */ r1e = (pdot - rindex*cos2) / (pdot + rindex*cos2); r1e *= r1e; r1m = (1.0/pdot - rindex/cos2) / (1.0/pdot + rindex/cos2); r1m *= r1m; /* compute transmittance */ for (i = 0; i < 3; i++) { d = colval(mcolor, i); colval(trans,i) = .5*(1.0-r1e)*(1.0-r1e)*d/(1.0-r1e*r1e*d*d); colval(trans,i) += .5*(1.0-r1m)*(1.0-r1m)*d/(1.0-r1m*r1m*d*d); } /* transmitted ray */ if (rayorigin(&p, r, TRANS, bright(trans)) == 0) { if (!(r->crtype & SHADOW) && DOT(r->pert,r->pert) > FTINY*FTINY) { for (i = 0; i < 3; i++) /* perturb direction */ p.rdir[i] = r->rdir[i] + 2.*(1.-rindex)*r->pert[i]; normalize(p.rdir); } else { VCOPY(p.rdir, r->rdir); transtest = 2; } rayvalue(&p); multcolor(p.rcol, r->pcol); /* modify */ multcolor(p.rcol, trans); addcolor(r->rcol, p.rcol); transtest *= bright(p.rcol); transdist = r->rot + p.rt; } if (r->crtype & SHADOW) /* skip reflected ray */ return; /* compute reflectance */ for (i = 0; i < 3; i++) { d = colval(mcolor, i); d *= d; colval(refl,i) = .5*r1e*(1.0+(1.0-2.0*r1e)*d)/(1.0-r1e*r1e*d); colval(refl,i) += .5*r1m*(1.0+(1.0-2.0*r1m)*d)/(1.0-r1m*r1m*d); } /* reflected ray */ if (rayorigin(&p, r, REFLECTED, bright(refl)) == 0) { for (i = 0; i < 3; i++) p.rdir[i] = r->rdir[i] + 2.0*pdot*pnorm[i]; rayvalue(&p); multcolor(p.rcol, refl); addcolor(r->rcol, p.rcol); } if (transtest > bright(r->rcol)) r->rt = transdist; }