ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/glass.c
Revision: 1.7
Committed: Wed May 8 08:27:46 1991 UTC (33 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.6: +13 -6 lines
Log Message:
fixed code for determining when to use trans distance

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * glass.c - simpler shading function for thin glass surfaces.
9 *
10 * 11/14/86
11 */
12
13 #include "ray.h"
14
15 /*
16 * This definition of glass provides for a quick calculation
17 * using a single surface where two closely spaced parallel
18 * dielectric surfaces would otherwise be used. The chief
19 * advantage to using this material is speed, since internal
20 * reflections are avoided.
21 *
22 * The specification for glass is as follows:
23 *
24 * modifier glass id
25 * 0
26 * 0
27 * 3 red grn blu
28 *
29 * The color is used for the transmission at normal incidence.
30 * To compute transmission (tn) from transmissivity (Tn) use:
31 *
32 * tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
33 *
34 * The transmission of standard 88% transmissivity glass is 0.96.
35 * If we appear to hit the back side of the surface, then we
36 * turn the normal around.
37 */
38
39 #define RINDEX 1.52 /* refractive index of glass */
40
41
42 m_glass(m, r) /* color a ray which hit a thin glass surface */
43 OBJREC *m;
44 register RAY *r;
45 {
46 double sqrt(), pow();
47 COLOR mcolor;
48 double pdot;
49 FVECT pnorm;
50 double cos2;
51 COLOR trans, refl;
52 double d, r1;
53 double transtest, transdist;
54 RAY p;
55 register int i;
56
57 if (m->oargs.nfargs != 3)
58 objerror(m, USER, "bad arguments");
59
60 setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]);
61
62 if (r->rod < 0.0) /* reorient if necessary */
63 flipsurface(r);
64 r->rt = r->rot; /* default ray length */
65 transtest = 0;
66 /* get modifiers */
67 raytexture(r, m->omod);
68 pdot = raynormal(pnorm, r);
69 /* angular transmission */
70 cos2 = sqrt( (1.0-1.0/RINDEX/RINDEX) +
71 pdot*pdot/(RINDEX*RINDEX) );
72 setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2),
73 pow(colval(mcolor,GRN), 1.0/cos2),
74 pow(colval(mcolor,BLU), 1.0/cos2));
75
76 /* compute reflection */
77 r1 = (pdot - RINDEX*cos2) / (pdot + RINDEX*cos2);
78 d = (1.0/pdot - RINDEX/cos2) / (1.0/pdot + RINDEX/cos2);
79 r1 = (r1*r1 + d*d) / 2.0;
80 /* compute transmittance */
81 for (i = 0; i < 3; i++) {
82 d = colval(mcolor, i);
83 colval(trans,i) = (1.0-r1)*(1.0-r1)*d / (1.0 - r1*r1*d*d);
84 }
85 /* transmitted ray */
86 if (rayorigin(&p, r, TRANS, bright(trans)) == 0) {
87 if (DOT(r->pert,r->pert) > FTINY*FTINY) {
88 for (i = 0; i < 3; i++) /* perturb direction */
89 p.rdir[i] = r->rdir[i] - r->pert[i]/RINDEX;
90 normalize(p.rdir);
91 } else
92 transtest = 2;
93 rayvalue(&p);
94 multcolor(p.rcol, r->pcol); /* modify */
95 multcolor(p.rcol, trans);
96 addcolor(r->rcol, p.rcol);
97 transtest *= bright(p.rcol);
98 transdist = r->rot + p.rt;
99 }
100
101 if (r->crtype & SHADOW) /* skip reflected ray */
102 return;
103 /* compute reflectance */
104 for (i = 0; i < 3; i++) {
105 d = colval(mcolor, i);
106 d *= d;
107 colval(refl,i) = r1 * (1.0 + (1.0-2.0*r1)*d) / (1.0 - r1*r1*d);
108 }
109 /* reflected ray */
110 if (rayorigin(&p, r, REFLECTED, bright(refl)) == 0) {
111 for (i = 0; i < 3; i++)
112 p.rdir[i] = r->rdir[i] + 2.0*pdot*pnorm[i];
113 rayvalue(&p);
114 multcolor(p.rcol, refl);
115 addcolor(r->rcol, p.rcol);
116 }
117 if (transtest > bright(r->rcol))
118 r->rt = transdist;
119 }