/* Copyright (c) 1991 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * glass.c - simpler shading function for thin glass surfaces. * * 11/14/86 */ #include "ray.h" /* * This definition of glass provides for a quick calculation * using a single surface where two closely spaced parallel * dielectric surfaces would otherwise be used. The chief * advantage to using this material is speed, since internal * reflections are avoided. * * The specification for glass is as follows: * * modifier glass id * 0 * 0 * 3 red grn blu * * The color is used for the transmission at normal incidence. * To compute transmission (tn) from transmissivity (Tn) use: * * tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn * * The transmission of standard 88% transmissivity glass is 0.96. * If we appear to hit the back side of the surface, then we * turn the normal around. */ #define RINDEX 1.52 /* refractive index of glass */ m_glass(m, r) /* color a ray which hit a thin glass surface */ OBJREC *m; register RAY *r; { double sqrt(), pow(); COLOR mcolor; double pdot; FVECT pnorm; double cos2; COLOR trans, refl; double d, r1; double transtest, transdist; RAY p; register int i; if (m->oargs.nfargs != 3) objerror(m, USER, "bad arguments"); setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); if (r->rod < 0.0) /* reorient if necessary */ flipsurface(r); r->rt = r->rot; /* default ray length */ transtest = 0; /* get modifiers */ raytexture(r, m->omod); pdot = raynormal(pnorm, r); /* angular transmission */ cos2 = sqrt( (1.0-1.0/RINDEX/RINDEX) + pdot*pdot/(RINDEX*RINDEX) ); setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2), pow(colval(mcolor,GRN), 1.0/cos2), pow(colval(mcolor,BLU), 1.0/cos2)); /* compute reflection */ r1 = (pdot - RINDEX*cos2) / (pdot + RINDEX*cos2); d = (1.0/pdot - RINDEX/cos2) / (1.0/pdot + RINDEX/cos2); r1 = (r1*r1 + d*d) / 2.0; /* compute transmittance */ for (i = 0; i < 3; i++) { d = colval(mcolor, i); colval(trans,i) = (1.0-r1)*(1.0-r1)*d / (1.0 - r1*r1*d*d); } /* transmitted ray */ if (rayorigin(&p, r, TRANS, bright(trans)) == 0) { if (DOT(r->pert,r->pert) > FTINY*FTINY) { for (i = 0; i < 3; i++) /* perturb direction */ p.rdir[i] = r->rdir[i] - r->pert[i]/RINDEX; normalize(p.rdir); } else transtest = 2; rayvalue(&p); multcolor(p.rcol, r->pcol); /* modify */ multcolor(p.rcol, trans); addcolor(r->rcol, p.rcol); transtest *= bright(p.rcol); transdist = r->rot + p.rt; } if (r->crtype & SHADOW) /* skip reflected ray */ return; /* compute reflectance */ for (i = 0; i < 3; i++) { d = colval(mcolor, i); d *= d; colval(refl,i) = r1 * (1.0 + (1.0-2.0*r1)*d) / (1.0 - r1*r1*d); } /* reflected ray */ if (rayorigin(&p, r, REFLECTED, bright(refl)) == 0) { for (i = 0; i < 3; i++) p.rdir[i] = r->rdir[i] + 2.0*pdot*pnorm[i]; rayvalue(&p); multcolor(p.rcol, refl); addcolor(r->rcol, p.rcol); } if (transtest > bright(r->rcol)) r->rt = transdist; }