ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/glass.c
Revision: 1.3
Committed: Tue Mar 27 11:40:00 1990 UTC (34 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.2: +4 -0 lines
Log Message:
Added rt field to RAY structure for more accurate z-buffering

File Contents

# Content
1 /* Copyright (c) 1986 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * glass.c - simpler shading function for thin glass surfaces.
9 *
10 * 11/14/86
11 */
12
13 #include "ray.h"
14
15 /*
16 * This definition of glass provides for a quick calculation
17 * using a single surface where two closely spaced parallel
18 * dielectric surfaces would otherwise be used. The chief
19 * advantage to using this material is speed, since internal
20 * reflections are avoided.
21 *
22 * The specification for glass is as follows:
23 *
24 * modifier glass id
25 * 0
26 * 0
27 * 3 red grn blu
28 *
29 * The color is used for the transmission at normal incidence.
30 * To compute transmission (tn) from transmissivity (Tn) use:
31 *
32 * tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
33 *
34 * The transmission of standard 88% transmissivity glass is 0.96.
35 * If we appear to hit the back side of the surface, then we
36 * turn the normal around.
37 */
38
39 #define RINDEX 1.52 /* refractive index of glass */
40
41
42 m_glass(m, r) /* color a ray which hit a thin glass surface */
43 OBJREC *m;
44 register RAY *r;
45 {
46 double sqrt(), pow();
47 COLOR mcolor;
48 double pdot;
49 FVECT pnorm;
50 double cos2;
51 COLOR trans, refl;
52 double d, r1;
53 RAY p;
54 register int i;
55
56 if (m->oargs.nfargs != 3)
57 objerror(m, USER, "bad arguments");
58
59 setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]);
60
61 if (r->rod < 0.0) /* reorient if necessary */
62 flipsurface(r);
63 /* get modifiers */
64 raytexture(r, m->omod);
65 pdot = raynormal(pnorm, r);
66 /* angular transmission */
67 cos2 = sqrt( (1.0-1.0/RINDEX/RINDEX) +
68 pdot*pdot/(RINDEX*RINDEX) );
69 setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2),
70 pow(colval(mcolor,GRN), 1.0/cos2),
71 pow(colval(mcolor,BLU), 1.0/cos2));
72
73 /* compute reflection */
74 r1 = (pdot - RINDEX*cos2) / (pdot + RINDEX*cos2);
75 d = (1.0/pdot - RINDEX/cos2) / (1.0/pdot + RINDEX/cos2);
76 r1 = (r1*r1 + d*d) / 2.0;
77 /* compute transmittance */
78 for (i = 0; i < 3; i++) {
79 d = colval(mcolor, i);
80 colval(trans,i) = (1.0-r1)*(1.0-r1)*d / (1.0 - r1*r1*d*d);
81 }
82 /* transmitted ray */
83 if (rayorigin(&p, r, TRANS, bright(trans)) == 0) {
84 VCOPY(p.rdir, r->rdir);
85 rayvalue(&p);
86 multcolor(p.rcol, r->pcol); /* modify */
87 multcolor(p.rcol, trans);
88 addcolor(r->rcol, p.rcol);
89 r->rt = r->rot + p.rt;
90 }
91
92 if (r->crtype & SHADOW) /* skip reflected ray */
93 return;
94 /* compute reflectance */
95 for (i = 0; i < 3; i++) {
96 d = colval(mcolor, i);
97 d *= d;
98 colval(refl,i) = r1 * (1.0 + (1.0-2.0*r1)*d) / (1.0 - r1*r1*d);
99 }
100 /* reflected ray */
101 if (rayorigin(&p, r, REFLECTED, bright(refl)) == 0) {
102 for (i = 0; i < 3; i++)
103 p.rdir[i] = r->rdir[i] + 2.0*pdot*pnorm[i];
104 rayvalue(&p);
105 multcolor(p.rcol, refl);
106 addcolor(r->rcol, p.rcol);
107 if (bright(refl) > bright(trans))
108 r->rt = r->rot + p.rt;
109 }
110 }