| 1 |
– |
/* Copyright (c) 1991 Regents of the University of California */ |
| 2 |
– |
|
| 1 |
|
#ifndef lint |
| 2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 6 |
– |
|
| 4 |
|
/* |
| 5 |
|
* glass.c - simpler shading function for thin glass surfaces. |
| 9 |
– |
* |
| 10 |
– |
* 11/14/86 |
| 6 |
|
*/ |
| 7 |
|
|
| 8 |
+ |
#include "copyright.h" |
| 9 |
+ |
|
| 10 |
|
#include "ray.h" |
| 11 |
|
|
| 12 |
+ |
#include "otypes.h" |
| 13 |
+ |
|
| 14 |
|
/* |
| 15 |
|
* This definition of glass provides for a quick calculation |
| 16 |
|
* using a single surface where two closely spaced parallel |
| 23 |
|
* modifier glass id |
| 24 |
|
* 0 |
| 25 |
|
* 0 |
| 26 |
< |
* 3 red grn blu |
| 26 |
> |
* 3+ red grn blu [refractive_index] |
| 27 |
|
* |
| 28 |
|
* The color is used for the transmission at normal incidence. |
| 29 |
< |
* To compute transmission (tn) from transmissivity (Tn) use: |
| 29 |
> |
* To compute transmissivity (tn) from transmittance (Tn) use: |
| 30 |
|
* |
| 31 |
|
* tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn |
| 32 |
|
* |
| 33 |
< |
* The transmission of standard 88% transmissivity glass is 0.96. |
| 33 |
> |
* The transmissivity of standard 88% transmittance glass is 0.96. |
| 34 |
|
* A refractive index other than the default can be used by giving |
| 35 |
|
* it as the fourth real argument. The above formula no longer applies. |
| 36 |
|
* |
| 50 |
|
FVECT pnorm; |
| 51 |
|
double rindex, cos2; |
| 52 |
|
COLOR trans, refl; |
| 53 |
+ |
int hastexture; |
| 54 |
|
double d, r1e, r1m; |
| 55 |
|
double transtest, transdist; |
| 56 |
+ |
double mirtest, mirdist; |
| 57 |
|
RAY p; |
| 58 |
|
register int i; |
| 59 |
|
/* check arguments */ |
| 66 |
|
|
| 67 |
|
setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); |
| 68 |
|
|
| 68 |
– |
if (r->rod < 0.0) /* reorient if necessary */ |
| 69 |
– |
flipsurface(r); |
| 70 |
– |
transtest = 0; |
| 69 |
|
/* get modifiers */ |
| 70 |
|
raytexture(r, m->omod); |
| 71 |
< |
pdot = raynormal(pnorm, r); |
| 71 |
> |
if (r->rod < 0.0) /* reorient if necessary */ |
| 72 |
> |
flipsurface(r); |
| 73 |
> |
mirtest = transtest = 0; |
| 74 |
> |
mirdist = transdist = r->rot; |
| 75 |
> |
/* perturb normal */ |
| 76 |
> |
if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) |
| 77 |
> |
pdot = raynormal(pnorm, r); |
| 78 |
> |
else { |
| 79 |
> |
VCOPY(pnorm, r->ron); |
| 80 |
> |
pdot = r->rod; |
| 81 |
> |
} |
| 82 |
|
/* angular transmission */ |
| 83 |
|
cos2 = sqrt( (1.0-1.0/(rindex*rindex)) + |
| 84 |
|
pdot*pdot/(rindex*rindex) ); |
| 99 |
|
} |
| 100 |
|
/* transmitted ray */ |
| 101 |
|
if (rayorigin(&p, r, TRANS, bright(trans)) == 0) { |
| 102 |
< |
if (!(r->crtype & SHADOW) && |
| 95 |
< |
DOT(r->pert,r->pert) > FTINY*FTINY) { |
| 102 |
> |
if (!(r->crtype & SHADOW) && hastexture) { |
| 103 |
|
for (i = 0; i < 3; i++) /* perturb direction */ |
| 104 |
|
p.rdir[i] = r->rdir[i] + |
| 105 |
|
2.*(1.-rindex)*r->pert[i]; |
| 119 |
|
transdist = r->rot + p.rt; |
| 120 |
|
} |
| 121 |
|
|
| 122 |
< |
if (r->crtype & SHADOW) /* skip reflected ray */ |
| 123 |
< |
return; |
| 122 |
> |
if (r->crtype & SHADOW) { /* skip reflected ray */ |
| 123 |
> |
r->rt = transdist; |
| 124 |
> |
return(1); |
| 125 |
> |
} |
| 126 |
|
/* compute reflectance */ |
| 127 |
|
for (i = 0; i < 3; i++) { |
| 128 |
|
d = colval(mcolor, i); |
| 137 |
|
rayvalue(&p); |
| 138 |
|
multcolor(p.rcol, refl); |
| 139 |
|
addcolor(r->rcol, p.rcol); |
| 140 |
+ |
if (!hastexture && r->ro != NULL && isflat(r->ro->otype)) { |
| 141 |
+ |
mirtest = 2.0*bright(p.rcol); |
| 142 |
+ |
mirdist = r->rot + p.rt; |
| 143 |
+ |
} |
| 144 |
|
} |
| 145 |
< |
if (transtest > bright(r->rcol)) |
| 145 |
> |
/* check distance */ |
| 146 |
> |
d = bright(r->rcol); |
| 147 |
> |
if (transtest > d) |
| 148 |
|
r->rt = transdist; |
| 149 |
+ |
else if (mirtest > d) |
| 150 |
+ |
r->rt = mirdist; |
| 151 |
+ |
return(1); |
| 152 |
|
} |