| 8 |
|
|
| 9 |
|
#include "standard.h" |
| 10 |
|
|
| 11 |
+ |
#include "calcomp.h" |
| 12 |
+ |
#include "func.h" |
| 13 |
+ |
|
| 14 |
|
#ifdef NOSTRUCTASSIGN |
| 15 |
|
static double err = "No structure assignment!"; /* generate compiler error */ |
| 16 |
|
#endif |
| 17 |
|
|
| 18 |
|
|
| 19 |
|
static double |
| 20 |
< |
Sqrt(x) |
| 21 |
< |
double x; |
| 20 |
> |
Sqrt( |
| 21 |
> |
double x |
| 22 |
> |
) |
| 23 |
|
{ |
| 24 |
|
if (x < 0.) |
| 25 |
|
return(0.); |
| 83 |
|
static double fact_ref[4]={1.0,1.0,1.0,1.0}; /* facteurs de reflexion */ |
| 84 |
|
static double tolerance; /* degre de tol. pour les amalgames */ |
| 85 |
|
static double tolsource; /* degre de tol. pour les sources */ |
| 82 |
– |
static double Nx; |
| 86 |
|
static int bidon; |
| 87 |
|
#define BADVAL (-10) |
| 88 |
|
static long prismclock = -1; |
| 92 |
|
static int nbrayons; /* indice des rayons sortants */ |
| 93 |
|
static TRAYON *ray; /* tableau des rayons sortants */ |
| 94 |
|
static TRAYON *raytemp; /* variable temporaire */ |
| 92 |
– |
static TRAYON rtemp; /* variable temporaire */ |
| 95 |
|
|
| 94 |
– |
extern double argument(); |
| 95 |
– |
extern double varvalue(); |
| 96 |
– |
extern double funvalue(); |
| 97 |
– |
extern long eclock; |
| 96 |
|
|
| 97 |
+ |
static void prepare_matrices(void); |
| 98 |
+ |
static void tfm(MAT4 mat, FVECT v_old, FVECT v_new); |
| 99 |
+ |
static double prob_alpha_beta(TRAYON r); |
| 100 |
+ |
static double prob_beta_alpha(TRAYON r); |
| 101 |
+ |
static double prob_gamma_alpha(TRAYON r); |
| 102 |
+ |
static void v_par(FVECT v, FVECT v_out); |
| 103 |
+ |
static void v_per(FVECT v, FVECT v_out); |
| 104 |
+ |
static TRAYON transalphabeta(TRAYON r_initial); |
| 105 |
+ |
static TRAYON transbetaalpha(TRAYON r_initial); |
| 106 |
+ |
static TRAYON transalphagamma(TRAYON r_initial); |
| 107 |
+ |
static TRAYON transgammaalpha(TRAYON r_initial); |
| 108 |
+ |
static int compare(TRAYON r1, TRAYON r2, double marge); |
| 109 |
+ |
static void sortie(TRAYON r); |
| 110 |
+ |
static void trigo(TRAYON r); |
| 111 |
+ |
static TRAYON reflexion(TRAYON r_incident); |
| 112 |
+ |
static TRAYON transmission(TRAYON r_incident); |
| 113 |
+ |
static void trace_rayon(TRAYON r_incident); |
| 114 |
+ |
static void inverser(TRAYON *r1, TRAYON *r2); |
| 115 |
+ |
static void setprism(void); |
| 116 |
+ |
static double l_get_val(char *nm); |
| 117 |
|
|
| 118 |
+ |
|
| 119 |
|
/* Definition des routines */ |
| 120 |
|
|
| 121 |
|
#define term(a,b) a/Sqrt(a*a+b*b) |
| 122 |
< |
static |
| 123 |
< |
prepare_matrices() |
| 122 |
> |
static void |
| 123 |
> |
prepare_matrices(void) |
| 124 |
|
{ |
| 125 |
< |
/* preparation des matrices de changement de bases */ |
| 125 |
> |
/* preparation des matrices de changement de bases */ |
| 126 |
|
|
| 127 |
< |
matb[0][0] = matbt[0][0] = matb[1][1] = matbt[1][1] = term(prism.a,prism.d); |
| 128 |
< |
matb[1][0] = matbt[0][1] = term(-prism.d,prism.a); |
| 129 |
< |
matb[0][1] = matbt[1][0] = term(prism.d,prism.a); |
| 130 |
< |
matc[0][0] = matct[0][0] = matc[1][1] = matct[1][1] = term(prism.b,prism.d); |
| 131 |
< |
matc[1][0] = matct[0][1] = term(prism.d,prism.b); |
| 132 |
< |
matc[0][1] = matct[1][0] = term(-prism.d,prism.b); |
| 133 |
< |
return; |
| 127 |
> |
matb[0][0] = matbt[0][0] = matb[1][1] = matbt[1][1] = term(prism.a,prism.d); |
| 128 |
> |
matb[1][0] = matbt[0][1] = term(-prism.d,prism.a); |
| 129 |
> |
matb[0][1] = matbt[1][0] = term(prism.d,prism.a); |
| 130 |
> |
matc[0][0] = matct[0][0] = matc[1][1] = matct[1][1] = term(prism.b,prism.d); |
| 131 |
> |
matc[1][0] = matct[0][1] = term(prism.d,prism.b); |
| 132 |
> |
matc[0][1] = matct[1][0] = term(-prism.d,prism.b); |
| 133 |
> |
return; |
| 134 |
|
} |
| 135 |
|
#undef term |
| 136 |
|
|
| 137 |
|
|
| 138 |
< |
static |
| 139 |
< |
tfm(mat,v_old,v_new) |
| 140 |
< |
MAT4 mat; |
| 141 |
< |
FVECT v_old,v_new; |
| 138 |
> |
static void |
| 139 |
> |
tfm( |
| 140 |
> |
MAT4 mat, |
| 141 |
> |
FVECT v_old, |
| 142 |
> |
FVECT v_new |
| 143 |
> |
) |
| 144 |
|
{ |
| 145 |
< |
/* passage d'un repere old au repere new par la matrice mat */ |
| 146 |
< |
FVECT v_temp; |
| 145 |
> |
/* passage d'un repere old au repere new par la matrice mat */ |
| 146 |
> |
FVECT v_temp; |
| 147 |
|
|
| 148 |
< |
multv3(v_temp,v_old,mat); |
| 149 |
< |
normalize(v_temp); |
| 150 |
< |
VCOPY(v_new,v_temp); |
| 151 |
< |
return; |
| 148 |
> |
multv3(v_temp,v_old,mat); |
| 149 |
> |
normalize(v_temp); |
| 150 |
> |
VCOPY(v_new,v_temp); |
| 151 |
> |
return; |
| 152 |
|
} |
| 153 |
|
|
| 154 |
|
#define A prism.a |
| 158 |
|
|
| 159 |
|
|
| 160 |
|
static double |
| 161 |
< |
prob_alpha_beta(r) |
| 162 |
< |
TRAYON r; |
| 161 |
> |
prob_alpha_beta( |
| 162 |
> |
TRAYON r |
| 163 |
> |
) |
| 164 |
|
{ |
| 165 |
< |
/* calcul de la probabilite de passage de alpha a beta */ |
| 166 |
< |
double prob,test; |
| 165 |
> |
/* calcul de la probabilite de passage de alpha a beta */ |
| 166 |
> |
double prob,test; |
| 167 |
|
|
| 168 |
< |
if ( X(r) != 0. ) |
| 168 |
> |
if ( X(r) != 0. ) |
| 169 |
|
{ |
| 170 |
< |
test = Y(r)/X(r); |
| 171 |
< |
if ( test > B/D ) prob = 1.; |
| 172 |
< |
else if ( test >= -A/D ) prob = (A+test*D)/(A+B); |
| 173 |
< |
else prob = 0.; |
| 170 |
> |
test = Y(r)/X(r); |
| 171 |
> |
if ( test > B/D ) prob = 1.; |
| 172 |
> |
else if ( test >= -A/D ) prob = (A+test*D)/(A+B); |
| 173 |
> |
else prob = 0.; |
| 174 |
|
} |
| 175 |
< |
else prob = 0.; |
| 176 |
< |
return prob; |
| 175 |
> |
else prob = 0.; |
| 176 |
> |
return prob; |
| 177 |
|
} |
| 178 |
|
|
| 179 |
|
|
| 180 |
|
static double |
| 181 |
< |
prob_beta_alpha(r) |
| 182 |
< |
TRAYON r; |
| 181 |
> |
prob_beta_alpha( |
| 182 |
> |
TRAYON r |
| 183 |
> |
) |
| 184 |
|
{ |
| 185 |
< |
/* calcul de la probabilite de passage de beta a aplha */ |
| 186 |
< |
double prob,test; |
| 185 |
> |
/* calcul de la probabilite de passage de beta a aplha */ |
| 186 |
> |
double prob,test; |
| 187 |
|
|
| 188 |
< |
if ( X(r) != 0. ) |
| 188 |
> |
if ( X(r) != 0. ) |
| 189 |
|
{ |
| 190 |
< |
test = Y(r)/X(r); |
| 191 |
< |
if ( test > B/D ) prob = (A+B)/(A+test*D); |
| 192 |
< |
else if ( test >= -A/D ) prob = 1.; |
| 193 |
< |
else prob = 0.; |
| 190 |
> |
test = Y(r)/X(r); |
| 191 |
> |
if ( test > B/D ) prob = (A+B)/(A+test*D); |
| 192 |
> |
else if ( test >= -A/D ) prob = 1.; |
| 193 |
> |
else prob = 0.; |
| 194 |
|
} |
| 195 |
< |
else prob = 0.; |
| 196 |
< |
return prob; |
| 195 |
> |
else prob = 0.; |
| 196 |
> |
return prob; |
| 197 |
|
} |
| 198 |
|
|
| 199 |
|
|
| 200 |
< |
double prob_gamma_alpha(r) |
| 201 |
< |
TRAYON r; |
| 200 |
> |
static double |
| 201 |
> |
prob_gamma_alpha( |
| 202 |
> |
TRAYON r |
| 203 |
> |
) |
| 204 |
|
{ |
| 205 |
< |
/* calcul de la probabilite de passage de gamma a alpha */ |
| 206 |
< |
double prob,test; |
| 205 |
> |
/* calcul de la probabilite de passage de gamma a alpha */ |
| 206 |
> |
double prob,test; |
| 207 |
|
|
| 208 |
< |
if ( X(r) != 0. ) |
| 208 |
> |
if ( X(r) != 0. ) |
| 209 |
|
{ |
| 210 |
< |
test = Y(r)/X(r); |
| 211 |
< |
if ( test > B/D ) prob = 0.; |
| 212 |
< |
else if ( test >= -A/D ) prob = 1.; |
| 213 |
< |
else prob = (A+B)/(B-test*D); |
| 210 |
> |
test = Y(r)/X(r); |
| 211 |
> |
if ( test > B/D ) prob = 0.; |
| 212 |
> |
else if ( test >= -A/D ) prob = 1.; |
| 213 |
> |
else prob = (A+B)/(B-test*D); |
| 214 |
|
} |
| 215 |
< |
else prob = 0.; |
| 216 |
< |
return prob; |
| 215 |
> |
else prob = 0.; |
| 216 |
> |
return prob; |
| 217 |
|
} |
| 218 |
|
|
| 219 |
|
#undef A |
| 222 |
|
#undef D |
| 223 |
|
|
| 224 |
|
|
| 225 |
< |
static |
| 226 |
< |
v_par(v,v_out) |
| 227 |
< |
FVECT v,v_out; |
| 225 |
> |
static void |
| 226 |
> |
v_par( |
| 227 |
> |
FVECT v, |
| 228 |
> |
FVECT v_out |
| 229 |
> |
) |
| 230 |
|
/* calcule le vecteur par au plan d'incidence lie a v */ |
| 231 |
|
{ |
| 232 |
< |
FVECT v_temp; |
| 233 |
< |
double det; |
| 232 |
> |
FVECT v_temp; |
| 233 |
> |
double det; |
| 234 |
|
|
| 235 |
< |
det = Sqrt( (YY(v)*YY(v)+ZZ(v)*ZZ(v))*(YY(v)*YY(v)+ZZ(v)*ZZ(v))+ |
| 236 |
< |
(XX(v)*XX(v)*YY(v)*YY(v))+(XX(v)*XX(v)*ZZ(v)*ZZ(v)) ); |
| 237 |
< |
XX(v_temp) = (YY(v)*YY(v)+ZZ(v)*ZZ(v))/det; |
| 238 |
< |
YY(v_temp) = -( XX(v)*YY(v) )/det; |
| 239 |
< |
ZZ(v_temp) = -( XX(v)*ZZ(v) )/det; |
| 240 |
< |
VCOPY(v_out,v_temp); |
| 241 |
< |
return; |
| 235 |
> |
det = Sqrt( (YY(v)*YY(v)+ZZ(v)*ZZ(v))*(YY(v)*YY(v)+ZZ(v)*ZZ(v))+ |
| 236 |
> |
(XX(v)*XX(v)*YY(v)*YY(v))+(XX(v)*XX(v)*ZZ(v)*ZZ(v)) ); |
| 237 |
> |
XX(v_temp) = (YY(v)*YY(v)+ZZ(v)*ZZ(v))/det; |
| 238 |
> |
YY(v_temp) = -( XX(v)*YY(v) )/det; |
| 239 |
> |
ZZ(v_temp) = -( XX(v)*ZZ(v) )/det; |
| 240 |
> |
VCOPY(v_out,v_temp); |
| 241 |
> |
return; |
| 242 |
|
} |
| 243 |
|
|
| 244 |
|
|
| 245 |
< |
static |
| 246 |
< |
v_per(v,v_out) |
| 247 |
< |
FVECT v,v_out; |
| 245 |
> |
static void |
| 246 |
> |
v_per( |
| 247 |
> |
FVECT v, |
| 248 |
> |
FVECT v_out |
| 249 |
> |
) |
| 250 |
|
/* calcule le vecteur perp au plan d'incidence lie a v */ |
| 251 |
|
{ |
| 252 |
< |
FVECT v_temp; |
| 253 |
< |
double det; |
| 252 |
> |
FVECT v_temp; |
| 253 |
> |
double det; |
| 254 |
|
|
| 255 |
< |
det = Sqrt( (ZZ(v)*ZZ(v)+YY(v)*YY(v)) ); |
| 256 |
< |
XX(v_temp) = 0.; |
| 257 |
< |
YY(v_temp) = -ZZ(v)/det; |
| 258 |
< |
ZZ(v_temp) = YY(v)/det; |
| 259 |
< |
VCOPY(v_out,v_temp); |
| 260 |
< |
return; |
| 255 |
> |
det = Sqrt( (ZZ(v)*ZZ(v)+YY(v)*YY(v)) ); |
| 256 |
> |
XX(v_temp) = 0.; |
| 257 |
> |
YY(v_temp) = -ZZ(v)/det; |
| 258 |
> |
ZZ(v_temp) = YY(v)/det; |
| 259 |
> |
VCOPY(v_out,v_temp); |
| 260 |
> |
return; |
| 261 |
|
} |
| 262 |
|
|
| 263 |
|
|
| 264 |
|
static TRAYON |
| 265 |
< |
transalphabeta(r_initial) |
| 265 |
> |
transalphabeta( |
| 266 |
> |
TRAYON r_initial |
| 267 |
> |
) |
| 268 |
|
/* transforme le rayon r_initial de la base associee a alpha dans |
| 269 |
|
la base associee a beta */ |
| 239 |
– |
TRAYON r_initial; |
| 270 |
|
{ |
| 271 |
< |
TRAYON r_final; |
| 272 |
< |
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2; |
| 271 |
> |
TRAYON r_final; |
| 272 |
> |
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2; |
| 273 |
|
|
| 274 |
< |
r_final = r_initial; |
| 275 |
< |
alpha_beta(r_initial.v,r_final.v); |
| 276 |
< |
if ((Y(r_initial) != 0. || Z(r_initial) != 0.)&&(Y(r_final) !=0. || Z(r_final)!= 0.)) |
| 277 |
< |
{ |
| 278 |
< |
v_par(r_initial.v,vpar_temp1); |
| 279 |
< |
alpha_beta(vpar_temp1,vpar_temp1); |
| 280 |
< |
v_per(r_initial.v,vper_temp1); |
| 281 |
< |
alpha_beta(vper_temp1,vper_temp1); |
| 282 |
< |
v_par(r_final.v,vpar_temp2); |
| 283 |
< |
v_per(r_final.v,vper_temp2); |
| 284 |
< |
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+ |
| 285 |
< |
(r_initial.pper1*fdot(vper_temp1,vpar_temp2)); |
| 286 |
< |
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+ |
| 287 |
< |
(r_initial.pper1*fdot(vper_temp1,vper_temp2)); |
| 288 |
< |
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+ |
| 289 |
< |
(r_initial.pper2*fdot(vper_temp1,vpar_temp2)); |
| 290 |
< |
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+ |
| 291 |
< |
(r_initial.pper2*fdot(vper_temp1,vper_temp2)); |
| 292 |
< |
} |
| 293 |
< |
return r_final; |
| 274 |
> |
r_final = r_initial; |
| 275 |
> |
alpha_beta(r_initial.v,r_final.v); |
| 276 |
> |
if ((Y(r_initial) != 0. || Z(r_initial) != 0.)&&(Y(r_final) !=0. || Z(r_final)!= 0.)) |
| 277 |
> |
{ |
| 278 |
> |
v_par(r_initial.v,vpar_temp1); |
| 279 |
> |
alpha_beta(vpar_temp1,vpar_temp1); |
| 280 |
> |
v_per(r_initial.v,vper_temp1); |
| 281 |
> |
alpha_beta(vper_temp1,vper_temp1); |
| 282 |
> |
v_par(r_final.v,vpar_temp2); |
| 283 |
> |
v_per(r_final.v,vper_temp2); |
| 284 |
> |
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+ |
| 285 |
> |
(r_initial.pper1*fdot(vper_temp1,vpar_temp2)); |
| 286 |
> |
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+ |
| 287 |
> |
(r_initial.pper1*fdot(vper_temp1,vper_temp2)); |
| 288 |
> |
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+ |
| 289 |
> |
(r_initial.pper2*fdot(vper_temp1,vpar_temp2)); |
| 290 |
> |
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+ |
| 291 |
> |
(r_initial.pper2*fdot(vper_temp1,vper_temp2)); |
| 292 |
> |
} |
| 293 |
> |
return r_final; |
| 294 |
|
} |
| 295 |
|
|
| 296 |
|
|
| 297 |
|
static TRAYON |
| 298 |
< |
transbetaalpha(r_initial) |
| 299 |
< |
/* transforme le rayon r_initial de la base associee a beta dans |
| 300 |
< |
la base associee a alpha */ |
| 271 |
< |
TRAYON r_initial; |
| 298 |
> |
transbetaalpha( |
| 299 |
> |
TRAYON r_initial |
| 300 |
> |
) |
| 301 |
|
{ |
| 302 |
< |
TRAYON r_final; |
| 303 |
< |
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2; |
| 302 |
> |
/* transforme le rayon r_initial de la base associee a beta dans |
| 303 |
> |
la base associee a alpha */ |
| 304 |
> |
TRAYON r_final; |
| 305 |
> |
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2; |
| 306 |
|
|
| 307 |
< |
r_final = r_initial; |
| 308 |
< |
beta_alpha(r_initial.v,r_final.v); |
| 309 |
< |
if ((Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final) != 0. || Z(r_final)!= 0.)) |
| 310 |
< |
{ |
| 311 |
< |
v_par(r_initial.v,vpar_temp1); |
| 312 |
< |
beta_alpha(vpar_temp1,vpar_temp1); |
| 313 |
< |
v_per(r_initial.v,vper_temp1); |
| 314 |
< |
beta_alpha(vper_temp1,vper_temp1); |
| 315 |
< |
v_par(r_final.v,vpar_temp2); |
| 316 |
< |
v_per(r_final.v,vper_temp2); |
| 317 |
< |
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+ |
| 318 |
< |
(r_initial.pper1*fdot(vper_temp1,vpar_temp2)); |
| 319 |
< |
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+ |
| 320 |
< |
(r_initial.pper1*fdot(vper_temp1,vper_temp2)); |
| 321 |
< |
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+ |
| 322 |
< |
(r_initial.pper2*fdot(vper_temp1,vpar_temp2)); |
| 323 |
< |
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+ |
| 324 |
< |
(r_initial.pper2*fdot(vper_temp1,vper_temp2)); |
| 307 |
> |
r_final = r_initial; |
| 308 |
> |
beta_alpha(r_initial.v,r_final.v); |
| 309 |
> |
if ((Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final) != 0. || Z(r_final)!= 0.)) |
| 310 |
> |
{ |
| 311 |
> |
v_par(r_initial.v,vpar_temp1); |
| 312 |
> |
beta_alpha(vpar_temp1,vpar_temp1); |
| 313 |
> |
v_per(r_initial.v,vper_temp1); |
| 314 |
> |
beta_alpha(vper_temp1,vper_temp1); |
| 315 |
> |
v_par(r_final.v,vpar_temp2); |
| 316 |
> |
v_per(r_final.v,vper_temp2); |
| 317 |
> |
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+ |
| 318 |
> |
(r_initial.pper1*fdot(vper_temp1,vpar_temp2)); |
| 319 |
> |
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+ |
| 320 |
> |
(r_initial.pper1*fdot(vper_temp1,vper_temp2)); |
| 321 |
> |
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+ |
| 322 |
> |
(r_initial.pper2*fdot(vper_temp1,vpar_temp2)); |
| 323 |
> |
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+ |
| 324 |
> |
(r_initial.pper2*fdot(vper_temp1,vper_temp2)); |
| 325 |
|
|
| 326 |
< |
} |
| 327 |
< |
return r_final; |
| 326 |
> |
} |
| 327 |
> |
return r_final; |
| 328 |
|
} |
| 329 |
|
|
| 330 |
|
|
| 331 |
|
static TRAYON |
| 332 |
< |
transalphagamma(r_initial) |
| 332 |
> |
transalphagamma( |
| 333 |
> |
TRAYON r_initial |
| 334 |
> |
) |
| 335 |
|
/* transforme le rayon r_initial de la base associee a alpha dans |
| 336 |
|
la base associee a gamma */ |
| 304 |
– |
TRAYON r_initial; |
| 337 |
|
{ |
| 338 |
< |
TRAYON r_final; |
| 339 |
< |
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2; |
| 338 |
> |
TRAYON r_final; |
| 339 |
> |
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2; |
| 340 |
|
|
| 341 |
< |
r_final = r_initial; |
| 342 |
< |
alpha_gamma(r_initial.v,r_final.v); |
| 343 |
< |
if (( Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final)!= 0. || Z(r_final) !=0.)) |
| 344 |
< |
{ |
| 345 |
< |
v_par(r_initial.v,vpar_temp1); |
| 346 |
< |
alpha_gamma(vpar_temp1,vpar_temp1); |
| 347 |
< |
v_per(r_initial.v,vper_temp1); |
| 348 |
< |
alpha_gamma(vper_temp1,vper_temp1); |
| 349 |
< |
v_par(r_final.v,vpar_temp2); |
| 350 |
< |
v_per(r_final.v,vper_temp2); |
| 351 |
< |
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+ |
| 352 |
< |
(r_initial.pper1*fdot(vper_temp1,vpar_temp2)); |
| 353 |
< |
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+ |
| 354 |
< |
(r_initial.pper1*fdot(vper_temp1,vper_temp2)); |
| 355 |
< |
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+ |
| 356 |
< |
(r_initial.pper2*fdot(vper_temp1,vpar_temp2)); |
| 357 |
< |
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+ |
| 358 |
< |
(r_initial.pper2*fdot(vper_temp1,vper_temp2)); |
| 341 |
> |
r_final = r_initial; |
| 342 |
> |
alpha_gamma(r_initial.v,r_final.v); |
| 343 |
> |
if (( Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final)!= 0. || Z(r_final) !=0.)) |
| 344 |
> |
{ |
| 345 |
> |
v_par(r_initial.v,vpar_temp1); |
| 346 |
> |
alpha_gamma(vpar_temp1,vpar_temp1); |
| 347 |
> |
v_per(r_initial.v,vper_temp1); |
| 348 |
> |
alpha_gamma(vper_temp1,vper_temp1); |
| 349 |
> |
v_par(r_final.v,vpar_temp2); |
| 350 |
> |
v_per(r_final.v,vper_temp2); |
| 351 |
> |
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+ |
| 352 |
> |
(r_initial.pper1*fdot(vper_temp1,vpar_temp2)); |
| 353 |
> |
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+ |
| 354 |
> |
(r_initial.pper1*fdot(vper_temp1,vper_temp2)); |
| 355 |
> |
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+ |
| 356 |
> |
(r_initial.pper2*fdot(vper_temp1,vpar_temp2)); |
| 357 |
> |
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+ |
| 358 |
> |
(r_initial.pper2*fdot(vper_temp1,vper_temp2)); |
| 359 |
|
|
| 360 |
< |
} |
| 361 |
< |
return r_final; |
| 360 |
> |
} |
| 361 |
> |
return r_final; |
| 362 |
|
} |
| 363 |
|
|
| 364 |
|
|
| 365 |
|
static TRAYON |
| 366 |
< |
transgammaalpha(r_initial) |
| 366 |
> |
transgammaalpha( |
| 367 |
> |
TRAYON r_initial |
| 368 |
> |
) |
| 369 |
|
/* transforme le rayon r_initial de la base associee a gamma dans |
| 370 |
|
la base associee a alpha */ |
| 337 |
– |
TRAYON r_initial; |
| 371 |
|
{ |
| 372 |
< |
TRAYON r_final; |
| 373 |
< |
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2; |
| 372 |
> |
TRAYON r_final; |
| 373 |
> |
FVECT vpar_temp1,vpar_temp2,vper_temp1,vper_temp2; |
| 374 |
|
|
| 375 |
< |
r_final = r_initial; |
| 376 |
< |
gamma_alpha(r_initial.v,r_final.v); |
| 377 |
< |
if (( Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final) !=0. || Z(r_final) != 0.)) |
| 378 |
< |
{ |
| 379 |
< |
v_par(r_initial.v,vpar_temp1); |
| 380 |
< |
gamma_alpha(vpar_temp1,vpar_temp1); |
| 381 |
< |
v_per(r_initial.v,vper_temp1); |
| 382 |
< |
gamma_alpha(vper_temp1,vper_temp1); |
| 383 |
< |
v_par(r_final.v,vpar_temp2); |
| 384 |
< |
v_per(r_final.v,vper_temp2); |
| 385 |
< |
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+ |
| 386 |
< |
(r_initial.pper1*fdot(vper_temp1,vpar_temp2)); |
| 387 |
< |
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+ |
| 388 |
< |
(r_initial.pper1*fdot(vper_temp1,vper_temp2)); |
| 389 |
< |
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+ |
| 390 |
< |
(r_initial.pper2*fdot(vper_temp1,vpar_temp2)); |
| 391 |
< |
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+ |
| 392 |
< |
(r_initial.pper2*fdot(vper_temp1,vper_temp2)); |
| 393 |
< |
} |
| 394 |
< |
return r_final; |
| 375 |
> |
r_final = r_initial; |
| 376 |
> |
gamma_alpha(r_initial.v,r_final.v); |
| 377 |
> |
if (( Y(r_initial) != 0. || Z(r_initial) != 0. )&&(Y(r_final) !=0. || Z(r_final) != 0.)) |
| 378 |
> |
{ |
| 379 |
> |
v_par(r_initial.v,vpar_temp1); |
| 380 |
> |
gamma_alpha(vpar_temp1,vpar_temp1); |
| 381 |
> |
v_per(r_initial.v,vper_temp1); |
| 382 |
> |
gamma_alpha(vper_temp1,vper_temp1); |
| 383 |
> |
v_par(r_final.v,vpar_temp2); |
| 384 |
> |
v_per(r_final.v,vper_temp2); |
| 385 |
> |
r_final.ppar1 = (r_initial.ppar1*fdot(vpar_temp1,vpar_temp2))+ |
| 386 |
> |
(r_initial.pper1*fdot(vper_temp1,vpar_temp2)); |
| 387 |
> |
r_final.pper1 = (r_initial.ppar1*fdot(vpar_temp1,vper_temp2))+ |
| 388 |
> |
(r_initial.pper1*fdot(vper_temp1,vper_temp2)); |
| 389 |
> |
r_final.ppar2 = (r_initial.ppar2*fdot(vpar_temp1,vpar_temp2))+ |
| 390 |
> |
(r_initial.pper2*fdot(vper_temp1,vpar_temp2)); |
| 391 |
> |
r_final.pper2 = (r_initial.ppar2*fdot(vpar_temp1,vper_temp2))+ |
| 392 |
> |
(r_initial.pper2*fdot(vper_temp1,vper_temp2)); |
| 393 |
> |
} |
| 394 |
> |
return r_final; |
| 395 |
|
} |
| 396 |
|
|
| 397 |
|
|
| 398 |
|
|
| 399 |
|
static int |
| 400 |
< |
compare(r1,r2,marge) |
| 401 |
< |
TRAYON r1, r2; |
| 402 |
< |
double marge; |
| 403 |
< |
|
| 400 |
> |
compare( |
| 401 |
> |
TRAYON r1, |
| 402 |
> |
TRAYON r2, |
| 403 |
> |
double marge |
| 404 |
> |
) |
| 405 |
|
{ |
| 406 |
< |
double arctg1, arctg2; |
| 406 |
> |
double arctg1, arctg2; |
| 407 |
|
|
| 408 |
< |
arctg1 = atan2(Y(r1),X(r1)); |
| 409 |
< |
arctg2 = atan2(Y(r2),X(r2)); |
| 410 |
< |
if ((arctg1 - marge <= arctg2) && (arctg1 + marge >= arctg2)) return 1; |
| 411 |
< |
else return 0; |
| 408 |
> |
arctg1 = atan2(Y(r1),X(r1)); |
| 409 |
> |
arctg2 = atan2(Y(r2),X(r2)); |
| 410 |
> |
if ((arctg1 - marge <= arctg2) && (arctg1 + marge >= arctg2)) return 1; |
| 411 |
> |
else return 0; |
| 412 |
|
} |
| 413 |
|
|
| 414 |
|
|
| 415 |
|
|
| 416 |
|
|
| 417 |
< |
static |
| 418 |
< |
sortie(r) |
| 419 |
< |
TRAYON r; |
| 417 |
> |
static void |
| 418 |
> |
sortie( |
| 419 |
> |
TRAYON r |
| 420 |
> |
) |
| 421 |
|
{ |
| 422 |
< |
int i = 0; |
| 423 |
< |
int egalite = 0; |
| 422 |
> |
int i = 0; |
| 423 |
> |
int egalite = 0; |
| 424 |
|
|
| 425 |
|
|
| 426 |
< |
if(r.e > seuil) |
| 427 |
< |
{ |
| 428 |
< |
while (i < nbrayons && egalite == 0) |
| 429 |
< |
{ |
| 430 |
< |
raytemp = &ray[i]; |
| 431 |
< |
egalite = compare(r,*raytemp,tolerance); |
| 432 |
< |
if (egalite) raytemp->e = raytemp->e + r.e; |
| 433 |
< |
else i = i + 1; |
| 434 |
< |
} |
| 435 |
< |
if (egalite == 0) |
| 436 |
< |
{ |
| 437 |
< |
if (nbrayons == 0) ray = (TRAYON *)calloc(1,sizeof(TRAYON)); |
| 438 |
< |
else ray = (TRAYON *)realloc(ray, (nbrayons+1)*(sizeof(TRAYON))); |
| 439 |
< |
if (ray == NULL) |
| 440 |
< |
error(SYSTEM, "out of memory in sortie\n"); |
| 441 |
< |
raytemp = &ray[nbrayons]; |
| 442 |
< |
raytemp->v[0] = X(r); |
| 443 |
< |
raytemp->v[1] = Y(r); |
| 444 |
< |
raytemp->v[2] = Z(r); |
| 445 |
< |
raytemp->e = r.e; |
| 446 |
< |
nbrayons++; |
| 447 |
< |
} |
| 448 |
< |
} |
| 449 |
< |
return; |
| 426 |
> |
if(r.e > seuil) |
| 427 |
> |
{ |
| 428 |
> |
while (i < nbrayons && egalite == 0) |
| 429 |
> |
{ |
| 430 |
> |
raytemp = &ray[i]; |
| 431 |
> |
egalite = compare(r,*raytemp,tolerance); |
| 432 |
> |
if (egalite) raytemp->e = raytemp->e + r.e; |
| 433 |
> |
else i = i + 1; |
| 434 |
> |
} |
| 435 |
> |
if (egalite == 0) |
| 436 |
> |
{ |
| 437 |
> |
if (nbrayons == 0) ray = (TRAYON *)calloc(1,sizeof(TRAYON)); |
| 438 |
> |
else ray = (TRAYON *)realloc((void *)ray, (nbrayons+1)*(sizeof(TRAYON))); |
| 439 |
> |
if (ray == NULL) |
| 440 |
> |
error(SYSTEM, "out of memory in sortie\n"); |
| 441 |
> |
raytemp = &ray[nbrayons]; |
| 442 |
> |
raytemp->v[0] = X(r); |
| 443 |
> |
raytemp->v[1] = Y(r); |
| 444 |
> |
raytemp->v[2] = Z(r); |
| 445 |
> |
raytemp->e = r.e; |
| 446 |
> |
nbrayons++; |
| 447 |
> |
} |
| 448 |
> |
} |
| 449 |
> |
return; |
| 450 |
|
} |
| 451 |
|
|
| 452 |
|
|
| 453 |
< |
static |
| 454 |
< |
trigo(r) |
| 455 |
< |
TRAYON r; |
| 453 |
> |
static void |
| 454 |
> |
trigo( |
| 455 |
> |
TRAYON r |
| 456 |
> |
) |
| 457 |
|
/* calcule les grandeurs trigonometriques relatives au rayon incident |
| 458 |
|
et le rapport entre les indices du milieu refracteur et incident */ |
| 459 |
|
{ |
| 460 |
< |
double det; |
| 461 |
< |
|
| 462 |
< |
det = Sqrt(X(r)*X(r)+Y(r)*Y(r)+Z(r)*Z(r)); |
| 463 |
< |
sinus = Sqrt(Y(r)*Y(r)+Z(r)*Z(r))/det; |
| 464 |
< |
cosinus = Sqrt(X(r)*X(r))/det; |
| 465 |
< |
if (r.n == 1.) rapport = prism.np * prism.np; |
| 466 |
< |
else rapport = 1./(prism.np * prism.np); |
| 467 |
< |
return; |
| 460 |
> |
double det; |
| 461 |
> |
|
| 462 |
> |
det = Sqrt(X(r)*X(r)+Y(r)*Y(r)+Z(r)*Z(r)); |
| 463 |
> |
sinus = Sqrt(Y(r)*Y(r)+Z(r)*Z(r))/det; |
| 464 |
> |
cosinus = Sqrt(X(r)*X(r))/det; |
| 465 |
> |
if (r.n == 1.) rapport = prism.np * prism.np; |
| 466 |
> |
else rapport = 1./(prism.np * prism.np); |
| 467 |
> |
return; |
| 468 |
|
} |
| 469 |
|
|
| 470 |
|
|
| 471 |
|
static TRAYON |
| 472 |
< |
reflexion(r_incident) |
| 473 |
< |
TRAYON r_incident; |
| 472 |
> |
reflexion( |
| 473 |
> |
TRAYON r_incident |
| 474 |
> |
) |
| 475 |
|
{ |
| 476 |
|
/* calcul du rayon reflechi par une face */ |
| 477 |
|
TRAYON r_reflechi; |
| 512 |
|
|
| 513 |
|
|
| 514 |
|
static TRAYON |
| 515 |
< |
transmission(r_incident) |
| 516 |
< |
TRAYON r_incident; |
| 515 |
> |
transmission( |
| 516 |
> |
TRAYON r_incident |
| 517 |
> |
) |
| 518 |
|
{ |
| 519 |
|
/* calcul du rayon refracte par une face */ |
| 520 |
|
TRAYON r_transmis; |
| 562 |
|
if ( r_suite.e > seuil ) trace_rayon(r_suite) |
| 563 |
|
|
| 564 |
|
|
| 565 |
< |
static |
| 566 |
< |
trace_rayon(r_incident) |
| 567 |
< |
TRAYON r_incident; |
| 565 |
> |
static void |
| 566 |
> |
trace_rayon( |
| 567 |
> |
TRAYON r_incident |
| 568 |
> |
) |
| 569 |
|
{ |
| 570 |
|
/* trace le rayon donne */ |
| 571 |
|
TRAYON r_reflechi,r_transmis,r_suite; |
| 655 |
|
|
| 656 |
|
#undef ensuite |
| 657 |
|
|
| 658 |
< |
static |
| 659 |
< |
inverser(r1,r2) |
| 660 |
< |
TRAYON *r1,*r2; |
| 661 |
< |
|
| 658 |
> |
static void |
| 659 |
> |
inverser( |
| 660 |
> |
TRAYON *r1, |
| 661 |
> |
TRAYON *r2 |
| 662 |
> |
) |
| 663 |
|
{ |
| 664 |
< |
TRAYON temp; |
| 665 |
< |
temp = *r1; |
| 666 |
< |
*r1 = *r2; |
| 667 |
< |
*r2 = temp; |
| 664 |
> |
TRAYON temp; |
| 665 |
> |
temp = *r1; |
| 666 |
> |
*r1 = *r2; |
| 667 |
> |
*r2 = temp; |
| 668 |
|
} |
| 669 |
|
|
| 670 |
|
|
| 671 |
|
|
| 672 |
< |
static |
| 673 |
< |
setprism() |
| 672 |
> |
static void |
| 673 |
> |
setprism(void) |
| 674 |
|
{ |
| 675 |
|
double d; |
| 676 |
|
TRAYON r_initial,rsource; |
| 677 |
< |
int i,j,k; |
| 677 |
> |
int i,j; |
| 678 |
|
|
| 679 |
|
prismclock = eclock; |
| 680 |
|
r_initial.ppar1 = r_initial.pper2 = 1.; |
| 768 |
|
|
| 769 |
|
|
| 770 |
|
static double |
| 771 |
< |
l_get_val() |
| 772 |
< |
|
| 771 |
> |
l_get_val( |
| 772 |
> |
char *nm |
| 773 |
> |
) |
| 774 |
|
{ |
| 775 |
|
int val, dir, i, trouve, curseur; |
| 776 |
|
int nb; |
| 822 |
|
} |
| 823 |
|
|
| 824 |
|
|
| 825 |
< |
setprismfuncs() |
| 825 |
> |
extern void |
| 826 |
> |
setprismfuncs(void) /* declared in func.h */ |
| 827 |
|
{ |
| 828 |
|
funset("fprism_val", 3, '=', l_get_val); |
| 829 |
|
} |