ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.9
Committed: Fri Dec 8 18:22:07 1995 UTC (28 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.8: +39 -17 lines
Log Message:
added M_MIST (mist) type and global participating medium

File Contents

# Content
1 /* Copyright (c) 1986 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * dielectric.c - shading function for transparent materials.
9 *
10 * 9/6/85
11 */
12
13 #include "ray.h"
14
15 #include "otypes.h"
16
17 #ifdef DISPERSE
18 #include "source.h"
19 static disperse();
20 static int lambda();
21 #endif
22
23 /*
24 * Explicit calculations for Fresnel's equation are performed,
25 * but only one square root computation is necessary.
26 * The index of refraction is given as a Hartmann equation
27 * with lambda0 equal to zero. If the slope of Hartmann's
28 * equation is non-zero, the material disperses light upon
29 * refraction. This condition is examined on rays traced to
30 * light sources. If a ray is exiting a dielectric material, we
31 * check the sources to see if any would cause bright color to be
32 * directed to the viewer due to dispersion. This gives colorful
33 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
34 *
35 * Arguments for MAT_DIELECTRIC are:
36 * red grn blu rndx Hartmann
37 *
38 * Arguments for MAT_INTERFACE are:
39 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
40 *
41 * The primaries are material transmission per unit length.
42 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
43 * outside.
44 */
45
46
47 #define MLAMBDA 500 /* mean lambda */
48 #define MAXLAMBDA 779 /* maximum lambda */
49 #define MINLAMBDA 380 /* minimum lambda */
50
51 #define MINCOS 0.997 /* minimum dot product for dispersion */
52
53 extern COLOR cextinction; /* global coefficient of extinction */
54 extern double salbedo; /* global scattering albedo */
55
56
57 m_dielectric(m, r) /* color a ray which hit a dielectric interface */
58 OBJREC *m;
59 register RAY *r;
60 {
61 double cos1, cos2, nratio;
62 COLOR ctrans;
63 double talb;
64 double mabsorp;
65 double refl, trans;
66 FVECT dnorm;
67 double d1, d2;
68 RAY p;
69 register int i;
70
71 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
72 objerror(m, USER, "bad arguments");
73
74 raytexture(r, m->omod); /* get modifiers */
75
76 cos1 = raynormal(dnorm, r); /* cosine of theta1 */
77 /* index of refraction */
78 if (m->otype == MAT_DIELECTRIC)
79 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
80 else
81 nratio = m->oargs.farg[3] / m->oargs.farg[7];
82
83 if (cos1 < 0.0) { /* inside */
84 cos1 = -cos1;
85 dnorm[0] = -dnorm[0];
86 dnorm[1] = -dnorm[1];
87 dnorm[2] = -dnorm[2];
88 setcolor(r->cext, -log(m->oargs.farg[0]*colval(r->pcol,RED)),
89 -log(m->oargs.farg[1]*colval(r->pcol,GRN)),
90 -log(m->oargs.farg[2]*colval(r->pcol,BLU)));
91 r->albedo = 0.;
92 r->gecc = 0.;
93 if (m->otype == MAT_INTERFACE) {
94 setcolor(ctrans,
95 -log(m->oargs.farg[4]*colval(r->pcol,RED)),
96 -log(m->oargs.farg[5]*colval(r->pcol,GRN)),
97 -log(m->oargs.farg[6]*colval(r->pcol,BLU)));
98 talb = 0.;
99 } else {
100 copycolor(ctrans, cextinction);
101 talb = salbedo;
102 }
103 } else { /* outside */
104 nratio = 1.0 / nratio;
105
106 setcolor(ctrans, -log(m->oargs.farg[0]*colval(r->pcol,RED)),
107 -log(m->oargs.farg[1]*colval(r->pcol,GRN)),
108 -log(m->oargs.farg[2]*colval(r->pcol,BLU)));
109 talb = 0.;
110 if (m->otype == MAT_INTERFACE) {
111 setcolor(r->cext,
112 -log(m->oargs.farg[4]*colval(r->pcol,RED)),
113 -log(m->oargs.farg[5]*colval(r->pcol,GRN)),
114 -log(m->oargs.farg[6]*colval(r->pcol,BLU)));
115 r->albedo = 0.;
116 r->gecc = 0.;
117 }
118 }
119 mabsorp = exp(-bright(r->cext)*r->rot); /* approximate */
120
121 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
122
123 if (d2 < FTINY) /* total reflection */
124
125 refl = 1.0;
126
127 else { /* refraction occurs */
128 /* compute Fresnel's equations */
129 cos2 = sqrt(d2);
130 d1 = cos1;
131 d2 = nratio*cos2;
132 d1 = (d1 - d2) / (d1 + d2);
133 refl = d1 * d1;
134
135 d1 = 1.0 / cos1;
136 d2 = nratio / cos2;
137 d1 = (d1 - d2) / (d1 + d2);
138 refl += d1 * d1;
139
140 refl *= 0.5;
141 trans = 1.0 - refl;
142
143 if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
144
145 /* compute refracted ray */
146 d1 = nratio*cos1 - cos2;
147 for (i = 0; i < 3; i++)
148 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
149
150 #ifdef DISPERSE
151 if (m->otype != MAT_DIELECTRIC
152 || r->rod > 0.0
153 || r->crtype & SHADOW
154 || !directvis
155 || m->oargs.farg[4] == 0.0
156 || !disperse(m, r, p.rdir, trans))
157 #endif
158 {
159 copycolor(p.cext, ctrans);
160 p.albedo = talb;
161 rayvalue(&p);
162 scalecolor(p.rcol, trans);
163 addcolor(r->rcol, p.rcol);
164 if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
165 r->rt = r->rot + p.rt;
166 }
167 }
168 }
169
170 if (!(r->crtype & SHADOW) &&
171 rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
172
173 /* compute reflected ray */
174 for (i = 0; i < 3; i++)
175 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
176
177 rayvalue(&p); /* reflected ray value */
178
179 scalecolor(p.rcol, refl); /* color contribution */
180 addcolor(r->rcol, p.rcol);
181 }
182 /* rayvalue() computes absorption */
183 return(1);
184 }
185
186
187 #ifdef DISPERSE
188
189 static
190 disperse(m, r, vt, tr) /* check light sources for dispersion */
191 OBJREC *m;
192 RAY *r;
193 FVECT vt;
194 double tr;
195 {
196 RAY sray, *entray;
197 FVECT v1, v2, n1, n2;
198 FVECT dv, v2Xdv;
199 double v2Xdvv2Xdv;
200 int success = 0;
201 SRCINDEX si;
202 FVECT vtmp1, vtmp2;
203 double dtmp1, dtmp2;
204 int l1, l2;
205 COLOR ctmp;
206 int i;
207
208 /*
209 * This routine computes dispersion to the first order using
210 * the following assumptions:
211 *
212 * 1) The dependency of the index of refraction on wavelength
213 * is approximated by Hartmann's equation with lambda0
214 * equal to zero.
215 * 2) The entry and exit locations are constant with respect
216 * to dispersion.
217 *
218 * The second assumption permits us to model dispersion without
219 * having to sample refracted directions. We assume that the
220 * geometry inside the material is constant, and concern ourselves
221 * only with the relationship between the entering and exiting ray.
222 * We compute the first derivatives of the entering and exiting
223 * refraction with respect to the index of refraction. This
224 * is then used in a first order Taylor series to determine the
225 * index of refraction necessary to send the exiting ray to each
226 * light source.
227 * If an exiting ray hits a light source within the refraction
228 * boundaries, we sum all the frequencies over the disc of the
229 * light source to determine the resulting color. A smaller light
230 * source will therefore exhibit a sharper spectrum.
231 */
232
233 if (!(r->crtype & REFRACTED)) { /* ray started in material */
234 VCOPY(v1, r->rdir);
235 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
236 } else {
237 /* find entry point */
238 for (entray = r; entray->rtype != REFRACTED;
239 entray = entray->parent)
240 ;
241 entray = entray->parent;
242 if (entray->crtype & REFRACTED) /* too difficult */
243 return(0);
244 VCOPY(v1, entray->rdir);
245 VCOPY(n1, entray->ron);
246 }
247 VCOPY(v2, vt); /* exiting ray */
248 VCOPY(n2, r->ron);
249
250 /* first order dispersion approx. */
251 dtmp1 = DOT(n1, v1);
252 dtmp2 = DOT(n2, v2);
253 for (i = 0; i < 3; i++)
254 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
255
256 if (DOT(dv, dv) <= FTINY) /* null effect */
257 return(0);
258 /* compute plane normal */
259 fcross(v2Xdv, v2, dv);
260 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
261
262 /* check sources */
263 initsrcindex(&si);
264 while (srcray(&sray, r, &si)) {
265
266 if (DOT(sray.rdir, v2) < MINCOS)
267 continue; /* bad source */
268 /* adjust source ray */
269
270 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
271 sray.rdir[0] -= dtmp1 * v2Xdv[0];
272 sray.rdir[1] -= dtmp1 * v2Xdv[1];
273 sray.rdir[2] -= dtmp1 * v2Xdv[2];
274
275 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
276
277 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
278 continue;
279 /* trace source ray */
280 normalize(sray.rdir);
281 rayvalue(&sray);
282 if (bright(sray.rcol) <= FTINY) /* missed it */
283 continue;
284
285 /*
286 * Compute spectral sum over diameter of source.
287 * First find directions for rays going to opposite
288 * sides of source, then compute wavelengths for each.
289 */
290
291 fcross(vtmp1, v2Xdv, sray.rdir);
292 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
293
294 /* compute first ray */
295 for (i = 0; i < 3; i++)
296 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
297
298 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
299 if (l1 < 0)
300 continue;
301 /* compute second ray */
302 for (i = 0; i < 3; i++)
303 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
304
305 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
306 if (l2 < 0)
307 continue;
308 /* compute color from spectrum */
309 if (l1 < l2)
310 spec_rgb(ctmp, l1, l2);
311 else
312 spec_rgb(ctmp, l2, l1);
313 multcolor(ctmp, sray.rcol);
314 scalecolor(ctmp, tr);
315 addcolor(r->rcol, ctmp);
316 success++;
317 }
318 return(success);
319 }
320
321
322 static int
323 lambda(m, v2, dv, lr) /* compute lambda for material */
324 register OBJREC *m;
325 FVECT v2, dv, lr;
326 {
327 FVECT lrXdv, v2Xlr;
328 double dtmp, denom;
329 int i;
330
331 fcross(lrXdv, lr, dv);
332 for (i = 0; i < 3; i++)
333 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
334 break;
335 if (i >= 3)
336 return(-1);
337
338 fcross(v2Xlr, v2, lr);
339
340 dtmp = m->oargs.farg[4] / MLAMBDA;
341 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
342
343 if (denom < FTINY)
344 return(-1);
345
346 return(m->oargs.farg[4] / denom);
347 }
348
349 #endif /* DISPERSE */