ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.7
Committed: Thu Jan 13 09:45:08 1994 UTC (30 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +2 -0 lines
Log Message:
added missing material function return values

File Contents

# Content
1 /* Copyright (c) 1986 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * dielectric.c - shading function for transparent materials.
9 *
10 * 9/6/85
11 */
12
13 #include "ray.h"
14
15 #include "otypes.h"
16
17 #ifdef DISPERSE
18 #include "source.h"
19 static disperse();
20 static int lambda();
21 #endif
22
23 /*
24 * Explicit calculations for Fresnel's equation are performed,
25 * but only one square root computation is necessary.
26 * The index of refraction is given as a Hartmann equation
27 * with lambda0 equal to zero. If the slope of Hartmann's
28 * equation is non-zero, the material disperses light upon
29 * refraction. This condition is examined on rays traced to
30 * light sources. If a ray is exiting a dielectric material, we
31 * check the sources to see if any would cause bright color to be
32 * directed to the viewer due to dispersion. This gives colorful
33 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
34 *
35 * Arguments for MAT_DIELECTRIC are:
36 * red grn blu rndx Hartmann
37 *
38 * Arguments for MAT_INTERFACE are:
39 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
40 *
41 * The primaries are material transmission per unit length.
42 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
43 * outside.
44 */
45
46
47 #define MLAMBDA 500 /* mean lambda */
48 #define MAXLAMBDA 779 /* maximum lambda */
49 #define MINLAMBDA 380 /* minimum lambda */
50
51 #define MINCOS 0.997 /* minimum dot product for dispersion */
52
53
54 m_dielectric(m, r) /* color a ray which hit something transparent */
55 OBJREC *m;
56 register RAY *r;
57 {
58 double cos1, cos2, nratio;
59 COLOR mcolor;
60 double mabsorp;
61 double refl, trans;
62 FVECT dnorm;
63 double d1, d2;
64 RAY p;
65 register int i;
66
67 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
68 objerror(m, USER, "bad arguments");
69
70 raytexture(r, m->omod); /* get modifiers */
71
72 cos1 = raynormal(dnorm, r); /* cosine of theta1 */
73 /* index of refraction */
74 if (m->otype == MAT_DIELECTRIC)
75 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
76 else
77 nratio = m->oargs.farg[3] / m->oargs.farg[7];
78
79 if (cos1 < 0.0) { /* inside */
80 cos1 = -cos1;
81 dnorm[0] = -dnorm[0];
82 dnorm[1] = -dnorm[1];
83 dnorm[2] = -dnorm[2];
84 setcolor(mcolor, pow(m->oargs.farg[0], r->rot),
85 pow(m->oargs.farg[1], r->rot),
86 pow(m->oargs.farg[2], r->rot));
87 } else { /* outside */
88 nratio = 1.0 / nratio;
89 if (m->otype == MAT_INTERFACE)
90 setcolor(mcolor, pow(m->oargs.farg[4], r->rot),
91 pow(m->oargs.farg[5], r->rot),
92 pow(m->oargs.farg[6], r->rot));
93 else
94 setcolor(mcolor, 1.0, 1.0, 1.0);
95 }
96 mabsorp = bright(mcolor);
97
98 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
99
100 if (d2 < FTINY) /* total reflection */
101
102 refl = 1.0;
103
104 else { /* refraction occurs */
105 /* compute Fresnel's equations */
106 cos2 = sqrt(d2);
107 d1 = cos1;
108 d2 = nratio*cos2;
109 d1 = (d1 - d2) / (d1 + d2);
110 refl = d1 * d1;
111
112 d1 = 1.0 / cos1;
113 d2 = nratio / cos2;
114 d1 = (d1 - d2) / (d1 + d2);
115 refl += d1 * d1;
116
117 refl /= 2.0;
118 trans = 1.0 - refl;
119
120 if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
121
122 /* compute refracted ray */
123 d1 = nratio*cos1 - cos2;
124 for (i = 0; i < 3; i++)
125 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
126
127 #ifdef DISPERSE
128 if (m->otype != MAT_DIELECTRIC
129 || r->rod > 0.0
130 || r->crtype & SHADOW
131 || !directvis
132 || m->oargs.farg[4] == 0.0
133 || !disperse(m, r, p.rdir, trans))
134 #endif
135 {
136 rayvalue(&p);
137 multcolor(mcolor, r->pcol); /* modify */
138 scalecolor(p.rcol, trans);
139 addcolor(r->rcol, p.rcol);
140 if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
141 r->rt = r->rot + p.rt;
142 }
143 }
144 }
145
146 if (!(r->crtype & SHADOW) &&
147 rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
148
149 /* compute reflected ray */
150 for (i = 0; i < 3; i++)
151 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
152
153 rayvalue(&p); /* reflected ray value */
154
155 scalecolor(p.rcol, refl); /* color contribution */
156 addcolor(r->rcol, p.rcol);
157 }
158
159 multcolor(r->rcol, mcolor); /* multiply by transmittance */
160
161 return(1);
162 }
163
164
165 #ifdef DISPERSE
166
167 static
168 disperse(m, r, vt, tr) /* check light sources for dispersion */
169 OBJREC *m;
170 RAY *r;
171 FVECT vt;
172 double tr;
173 {
174 RAY sray, *entray;
175 FVECT v1, v2, n1, n2;
176 FVECT dv, v2Xdv;
177 double v2Xdvv2Xdv;
178 int success = 0;
179 SRCINDEX si;
180 FVECT vtmp1, vtmp2;
181 double dtmp1, dtmp2;
182 int l1, l2;
183 COLOR ctmp;
184 int i;
185
186 /*
187 * This routine computes dispersion to the first order using
188 * the following assumptions:
189 *
190 * 1) The dependency of the index of refraction on wavelength
191 * is approximated by Hartmann's equation with lambda0
192 * equal to zero.
193 * 2) The entry and exit locations are constant with respect
194 * to dispersion.
195 *
196 * The second assumption permits us to model dispersion without
197 * having to sample refracted directions. We assume that the
198 * geometry inside the material is constant, and concern ourselves
199 * only with the relationship between the entering and exiting ray.
200 * We compute the first derivatives of the entering and exiting
201 * refraction with respect to the index of refraction. This
202 * is then used in a first order Taylor series to determine the
203 * index of refraction necessary to send the exiting ray to each
204 * light source.
205 * If an exiting ray hits a light source within the refraction
206 * boundaries, we sum all the frequencies over the disc of the
207 * light source to determine the resulting color. A smaller light
208 * source will therefore exhibit a sharper spectrum.
209 */
210
211 if (!(r->crtype & REFRACTED)) { /* ray started in material */
212 VCOPY(v1, r->rdir);
213 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
214 } else {
215 /* find entry point */
216 for (entray = r; entray->rtype != REFRACTED;
217 entray = entray->parent)
218 ;
219 entray = entray->parent;
220 if (entray->crtype & REFRACTED) /* too difficult */
221 return(0);
222 VCOPY(v1, entray->rdir);
223 VCOPY(n1, entray->ron);
224 }
225 VCOPY(v2, vt); /* exiting ray */
226 VCOPY(n2, r->ron);
227
228 /* first order dispersion approx. */
229 dtmp1 = DOT(n1, v1);
230 dtmp2 = DOT(n2, v2);
231 for (i = 0; i < 3; i++)
232 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
233
234 if (DOT(dv, dv) <= FTINY) /* null effect */
235 return(0);
236 /* compute plane normal */
237 fcross(v2Xdv, v2, dv);
238 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
239
240 /* check sources */
241 initsrcindex(&si);
242 while (srcray(&sray, r, &si)) {
243
244 if (DOT(sray.rdir, v2) < MINCOS)
245 continue; /* bad source */
246 /* adjust source ray */
247
248 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
249 sray.rdir[0] -= dtmp1 * v2Xdv[0];
250 sray.rdir[1] -= dtmp1 * v2Xdv[1];
251 sray.rdir[2] -= dtmp1 * v2Xdv[2];
252
253 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
254
255 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
256 continue;
257 /* trace source ray */
258 normalize(sray.rdir);
259 rayvalue(&sray);
260 if (bright(sray.rcol) <= FTINY) /* missed it */
261 continue;
262
263 /*
264 * Compute spectral sum over diameter of source.
265 * First find directions for rays going to opposite
266 * sides of source, then compute wavelengths for each.
267 */
268
269 fcross(vtmp1, v2Xdv, sray.rdir);
270 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
271
272 /* compute first ray */
273 for (i = 0; i < 3; i++)
274 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
275
276 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
277 if (l1 < 0)
278 continue;
279 /* compute second ray */
280 for (i = 0; i < 3; i++)
281 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
282
283 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
284 if (l2 < 0)
285 continue;
286 /* compute color from spectrum */
287 if (l1 < l2)
288 spec_rgb(ctmp, l1, l2);
289 else
290 spec_rgb(ctmp, l2, l1);
291 multcolor(ctmp, sray.rcol);
292 scalecolor(ctmp, tr);
293 addcolor(r->rcol, ctmp);
294 success++;
295 }
296 return(success);
297 }
298
299
300 static int
301 lambda(m, v2, dv, lr) /* compute lambda for material */
302 register OBJREC *m;
303 FVECT v2, dv, lr;
304 {
305 FVECT lrXdv, v2Xlr;
306 double dtmp, denom;
307 int i;
308
309 fcross(lrXdv, lr, dv);
310 for (i = 0; i < 3; i++)
311 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
312 break;
313 if (i >= 3)
314 return(-1);
315
316 fcross(v2Xlr, v2, lr);
317
318 dtmp = m->oargs.farg[4] / MLAMBDA;
319 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
320
321 if (denom < FTINY)
322 return(-1);
323
324 return(m->oargs.farg[4] / denom);
325 }
326
327 #endif /* DISPERSE */