ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.5
Committed: Mon Mar 8 12:37:15 1993 UTC (31 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +1 -0 lines
Log Message:
portability fixes (removed gcc warnings)

File Contents

# Content
1 /* Copyright (c) 1986 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * dielectric.c - shading function for transparent materials.
9 *
10 * 9/6/85
11 */
12
13 #include "ray.h"
14
15 #include "otypes.h"
16
17 #ifdef DISPERSE
18 #include "source.h"
19 static disperse();
20 #endif
21
22 /*
23 * Explicit calculations for Fresnel's equation are performed,
24 * but only one square root computation is necessary.
25 * The index of refraction is given as a Hartmann equation
26 * with lambda0 equal to zero. If the slope of Hartmann's
27 * equation is non-zero, the material disperses light upon
28 * refraction. This condition is examined on rays traced to
29 * light sources. If a ray is exiting a dielectric material, we
30 * check the sources to see if any would cause bright color to be
31 * directed to the viewer due to dispersion. This gives colorful
32 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
33 *
34 * Arguments for MAT_DIELECTRIC are:
35 * red grn blu rndx Hartmann
36 *
37 * Arguments for MAT_INTERFACE are:
38 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
39 *
40 * The primaries are material transmission per unit length.
41 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
42 * outside.
43 */
44
45
46 #define MLAMBDA 500 /* mean lambda */
47 #define MAXLAMBDA 779 /* maximum lambda */
48 #define MINLAMBDA 380 /* minimum lambda */
49
50 #define MINCOS 0.997 /* minimum dot product for dispersion */
51
52
53 m_dielectric(m, r) /* color a ray which hit something transparent */
54 OBJREC *m;
55 register RAY *r;
56 {
57 double cos1, cos2, nratio;
58 COLOR mcolor;
59 double mabsorp;
60 double refl, trans;
61 FVECT dnorm;
62 double d1, d2;
63 RAY p;
64 register int i;
65
66 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
67 objerror(m, USER, "bad arguments");
68
69 raytexture(r, m->omod); /* get modifiers */
70
71 cos1 = raynormal(dnorm, r); /* cosine of theta1 */
72 /* index of refraction */
73 if (m->otype == MAT_DIELECTRIC)
74 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
75 else
76 nratio = m->oargs.farg[3] / m->oargs.farg[7];
77
78 if (cos1 < 0.0) { /* inside */
79 cos1 = -cos1;
80 dnorm[0] = -dnorm[0];
81 dnorm[1] = -dnorm[1];
82 dnorm[2] = -dnorm[2];
83 setcolor(mcolor, pow(m->oargs.farg[0], r->rot),
84 pow(m->oargs.farg[1], r->rot),
85 pow(m->oargs.farg[2], r->rot));
86 } else { /* outside */
87 nratio = 1.0 / nratio;
88 if (m->otype == MAT_INTERFACE)
89 setcolor(mcolor, pow(m->oargs.farg[4], r->rot),
90 pow(m->oargs.farg[5], r->rot),
91 pow(m->oargs.farg[6], r->rot));
92 else
93 setcolor(mcolor, 1.0, 1.0, 1.0);
94 }
95 mabsorp = bright(mcolor);
96
97 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
98
99 if (d2 < FTINY) /* total reflection */
100
101 refl = 1.0;
102
103 else { /* refraction occurs */
104 /* compute Fresnel's equations */
105 cos2 = sqrt(d2);
106 d1 = cos1;
107 d2 = nratio*cos2;
108 d1 = (d1 - d2) / (d1 + d2);
109 refl = d1 * d1;
110
111 d1 = 1.0 / cos1;
112 d2 = nratio / cos2;
113 d1 = (d1 - d2) / (d1 + d2);
114 refl += d1 * d1;
115
116 refl /= 2.0;
117 trans = 1.0 - refl;
118
119 if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
120
121 /* compute refracted ray */
122 d1 = nratio*cos1 - cos2;
123 for (i = 0; i < 3; i++)
124 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
125
126 #ifdef DISPERSE
127 if (m->otype != MAT_DIELECTRIC
128 || r->rod > 0.0
129 || r->crtype & SHADOW
130 || !directvis
131 || m->oargs.farg[4] == 0.0
132 || !disperse(m, r, p.rdir, trans))
133 #endif
134 {
135 rayvalue(&p);
136 multcolor(mcolor, r->pcol); /* modify */
137 scalecolor(p.rcol, trans);
138 addcolor(r->rcol, p.rcol);
139 if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
140 r->rt = r->rot + p.rt;
141 }
142 }
143 }
144
145 if (!(r->crtype & SHADOW) &&
146 rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
147
148 /* compute reflected ray */
149 for (i = 0; i < 3; i++)
150 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
151
152 rayvalue(&p); /* reflected ray value */
153
154 scalecolor(p.rcol, refl); /* color contribution */
155 addcolor(r->rcol, p.rcol);
156 }
157
158 multcolor(r->rcol, mcolor); /* multiply by transmittance */
159 }
160
161
162 #ifdef DISPERSE
163
164 static
165 disperse(m, r, vt, tr) /* check light sources for dispersion */
166 OBJREC *m;
167 RAY *r;
168 FVECT vt;
169 double tr;
170 {
171 RAY sray, *entray;
172 FVECT v1, v2, n1, n2;
173 FVECT dv, v2Xdv;
174 double v2Xdvv2Xdv;
175 int success = 0;
176 SRCINDEX si;
177 FVECT vtmp1, vtmp2;
178 double dtmp1, dtmp2;
179 int l1, l2;
180 COLOR ctmp;
181 int i;
182
183 /*
184 * This routine computes dispersion to the first order using
185 * the following assumptions:
186 *
187 * 1) The dependency of the index of refraction on wavelength
188 * is approximated by Hartmann's equation with lambda0
189 * equal to zero.
190 * 2) The entry and exit locations are constant with respect
191 * to dispersion.
192 *
193 * The second assumption permits us to model dispersion without
194 * having to sample refracted directions. We assume that the
195 * geometry inside the material is constant, and concern ourselves
196 * only with the relationship between the entering and exiting ray.
197 * We compute the first derivatives of the entering and exiting
198 * refraction with respect to the index of refraction. This
199 * is then used in a first order Taylor series to determine the
200 * index of refraction necessary to send the exiting ray to each
201 * light source.
202 * If an exiting ray hits a light source within the refraction
203 * boundaries, we sum all the frequencies over the disc of the
204 * light source to determine the resulting color. A smaller light
205 * source will therefore exhibit a sharper spectrum.
206 */
207
208 if (!(r->crtype & REFRACTED)) { /* ray started in material */
209 VCOPY(v1, r->rdir);
210 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
211 } else {
212 /* find entry point */
213 for (entray = r; entray->rtype != REFRACTED;
214 entray = entray->parent)
215 ;
216 entray = entray->parent;
217 if (entray->crtype & REFRACTED) /* too difficult */
218 return(0);
219 VCOPY(v1, entray->rdir);
220 VCOPY(n1, entray->ron);
221 }
222 VCOPY(v2, vt); /* exiting ray */
223 VCOPY(n2, r->ron);
224
225 /* first order dispersion approx. */
226 dtmp1 = DOT(n1, v1);
227 dtmp2 = DOT(n2, v2);
228 for (i = 0; i < 3; i++)
229 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
230
231 if (DOT(dv, dv) <= FTINY) /* null effect */
232 return(0);
233 /* compute plane normal */
234 fcross(v2Xdv, v2, dv);
235 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
236
237 /* check sources */
238 initsrcindex(&si);
239 while (srcray(&sray, r, &si)) {
240
241 if (DOT(sray.rdir, v2) < MINCOS)
242 continue; /* bad source */
243 /* adjust source ray */
244
245 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
246 sray.rdir[0] -= dtmp1 * v2Xdv[0];
247 sray.rdir[1] -= dtmp1 * v2Xdv[1];
248 sray.rdir[2] -= dtmp1 * v2Xdv[2];
249
250 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
251
252 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
253 continue;
254 /* trace source ray */
255 normalize(sray.rdir);
256 rayvalue(&sray);
257 if (bright(sray.rcol) <= FTINY) /* missed it */
258 continue;
259
260 /*
261 * Compute spectral sum over diameter of source.
262 * First find directions for rays going to opposite
263 * sides of source, then compute wavelengths for each.
264 */
265
266 fcross(vtmp1, v2Xdv, sray.rdir);
267 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
268
269 /* compute first ray */
270 for (i = 0; i < 3; i++)
271 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
272
273 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
274 if (l1 < 0)
275 continue;
276 /* compute second ray */
277 for (i = 0; i < 3; i++)
278 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
279
280 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
281 if (l2 < 0)
282 continue;
283 /* compute color from spectrum */
284 if (l1 < l2)
285 spec_rgb(ctmp, l1, l2);
286 else
287 spec_rgb(ctmp, l2, l1);
288 multcolor(ctmp, sray.rcol);
289 scalecolor(ctmp, tr);
290 addcolor(r->rcol, ctmp);
291 success++;
292 }
293 return(success);
294 }
295
296
297 static int
298 lambda(m, v2, dv, lr) /* compute lambda for material */
299 register OBJREC *m;
300 FVECT v2, dv, lr;
301 {
302 FVECT lrXdv, v2Xlr;
303 double dtmp, denom;
304 int i;
305
306 fcross(lrXdv, lr, dv);
307 for (i = 0; i < 3; i++)
308 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
309 break;
310 if (i >= 3)
311 return(-1);
312
313 fcross(v2Xlr, v2, lr);
314
315 dtmp = m->oargs.farg[4] / MLAMBDA;
316 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
317
318 if (denom < FTINY)
319 return(-1);
320
321 return(m->oargs.farg[4] / denom);
322 }
323
324 #endif /* DISPERSE */