ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.30
Committed: Fri Apr 19 19:01:32 2019 UTC (5 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, rad5R3
Changes since 2.29: +3 -2 lines
Log Message:
Make sure reflected ray distance is not infinite if there's a reflection

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: dielectric.c,v 2.29 2018/11/13 19:58:33 greg Exp $";
3 #endif
4 /*
5 * dielectric.c - shading function for transparent materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "rtotypes.h"
13 #include "pmapmat.h"
14
15 #ifdef DISPERSE
16 #include "source.h"
17 static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt);
18 static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr);
19 #endif
20
21 static double mylog(double x);
22
23
24 /*
25 * Explicit calculations for Fresnel's equation are performed,
26 * but only one square root computation is necessary.
27 * The index of refraction is given as a Hartmann equation
28 * with lambda0 equal to zero. If the slope of Hartmann's
29 * equation is non-zero, the material disperses light upon
30 * refraction. This condition is examined on rays traced to
31 * light sources. If a ray is exiting a dielectric material, we
32 * check the sources to see if any would cause bright color to be
33 * directed to the viewer due to dispersion. This gives colorful
34 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
35 *
36 * Arguments for MAT_DIELECTRIC are:
37 * red grn blu rndx Hartmann
38 *
39 * Arguments for MAT_INTERFACE are:
40 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
41 *
42 * The primaries are material transmission per unit length.
43 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
44 * outside.
45 */
46
47
48 #define MLAMBDA 500 /* mean lambda */
49 #define MAXLAMBDA 779 /* maximum lambda */
50 #define MINLAMBDA 380 /* minimum lambda */
51
52 #define MINCOS 0.997 /* minimum dot product for dispersion */
53
54 static double
55 mylog( /* special log for extinction coefficients */
56 double x
57 )
58 {
59 if (x < 1e-40)
60 return(-100.);
61 if (x >= 1.)
62 return(0.);
63 return(log(x));
64 }
65
66
67 int
68 m_dielectric( /* color a ray which hit a dielectric interface */
69 OBJREC *m,
70 RAY *r
71 )
72 {
73 double cos1, cos2, nratio;
74 COLOR ctrans;
75 COLOR talb;
76 int hastexture;
77 int flatsurface;
78 double refl, trans;
79 FVECT dnorm;
80 double d1, d2;
81 RAY p;
82 int i;
83
84 /* PMAP: skip refracted shadow or ambient ray if accounted for in
85 photon map */
86 if (shadowRayInPmap(r) || ambRayInPmap(r))
87 return(1);
88
89 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
90 objerror(m, USER, "bad arguments");
91
92 raytexture(r, m->omod); /* get modifiers */
93
94 if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
95 cos1 = raynormal(dnorm, r); /* perturb normal */
96 else {
97 VCOPY(dnorm, r->ron);
98 cos1 = r->rod;
99 }
100 flatsurface = r->ro != NULL && isflat(r->ro->otype) &&
101 !hastexture | (r->crtype & AMBIENT);
102
103 /* index of refraction */
104 if (m->otype == MAT_DIELECTRIC)
105 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
106 else
107 nratio = m->oargs.farg[3] / m->oargs.farg[7];
108
109 if (cos1 < 0.0) { /* inside */
110 hastexture = -hastexture;
111 cos1 = -cos1;
112 dnorm[0] = -dnorm[0];
113 dnorm[1] = -dnorm[1];
114 dnorm[2] = -dnorm[2];
115 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
116 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
117 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
118 setcolor(r->albedo, 0., 0., 0.);
119 r->gecc = 0.;
120 if (m->otype == MAT_INTERFACE) {
121 setcolor(ctrans,
122 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
123 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
124 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
125 setcolor(talb, 0., 0., 0.);
126 } else {
127 copycolor(ctrans, cextinction);
128 copycolor(talb, salbedo);
129 }
130 } else { /* outside */
131 nratio = 1.0 / nratio;
132
133 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
134 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
135 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
136 setcolor(talb, 0., 0., 0.);
137 if (m->otype == MAT_INTERFACE) {
138 setcolor(r->cext,
139 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
140 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
141 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
142 setcolor(r->albedo, 0., 0., 0.);
143 r->gecc = 0.;
144 }
145 }
146
147 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
148
149 if (d2 < FTINY) /* total reflection */
150
151 refl = 1.0;
152
153 else { /* refraction occurs */
154 /* compute Fresnel's equations */
155 cos2 = sqrt(d2);
156 d1 = cos1;
157 d2 = nratio*cos2;
158 d1 = (d1 - d2) / (d1 + d2);
159 refl = d1 * d1;
160
161 d1 = 1.0 / cos1;
162 d2 = nratio / cos2;
163 d1 = (d1 - d2) / (d1 + d2);
164 refl += d1 * d1;
165
166 refl *= 0.5;
167 trans = 1.0 - refl;
168
169 trans *= nratio*nratio; /* solid angle ratio */
170
171 setcolor(p.rcoef, trans, trans, trans);
172
173 if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) {
174
175 /* compute refracted ray */
176 d1 = nratio*cos1 - cos2;
177 for (i = 0; i < 3; i++)
178 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
179 /* accidental reflection? */
180 if (hastexture &&
181 DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
182 d1 *= (double)hastexture;
183 for (i = 0; i < 3; i++) /* ignore texture */
184 p.rdir[i] = nratio*r->rdir[i] +
185 d1*r->ron[i];
186 normalize(p.rdir); /* not exact */
187 } else
188 checknorm(p.rdir);
189 #ifdef DISPERSE
190 if (m->otype != MAT_DIELECTRIC
191 || r->rod > 0.0
192 || r->crtype & SHADOW
193 || !directvis
194 || m->oargs.farg[4] == 0.0
195 || !disperse(m, r, p.rdir,
196 trans, ctrans, talb))
197 #endif
198 {
199 copycolor(p.cext, ctrans);
200 copycolor(p.albedo, talb);
201 rayvalue(&p);
202 multcolor(p.rcol, p.rcoef);
203 addcolor(r->rcol, p.rcol);
204 /* virtual distance */
205 if (flatsurface ||
206 (1.-FTINY <= nratio) &
207 (nratio <= 1.+FTINY))
208 r->rxt = r->rot + raydistance(&p);
209 }
210 }
211 }
212 setcolor(p.rcoef, refl, refl, refl);
213
214 if (!(r->crtype & SHADOW) &&
215 rayorigin(&p, REFLECTED, r, p.rcoef) == 0) {
216
217 /* compute reflected ray */
218 VSUM(p.rdir, r->rdir, dnorm, 2.*cos1);
219 /* accidental penetration? */
220 if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
221 VSUM(p.rdir, r->rdir, r->ron, 2.*r->rod);
222 checknorm(p.rdir);
223 rayvalue(&p); /* reflected ray value */
224
225 multcolor(p.rcol, p.rcoef); /* color contribution */
226 copycolor(r->mcol, p.rcol);
227 addcolor(r->rcol, p.rcol);
228 /* virtual distance */
229 r->rmt = r->rot;
230 if (flatsurface)
231 r->rmt += raydistance(&p);
232 }
233 /* rayvalue() computes absorption */
234 return(1);
235 }
236
237
238 #ifdef DISPERSE
239
240 static int
241 disperse( /* check light sources for dispersion */
242 OBJREC *m,
243 RAY *r,
244 FVECT vt,
245 double tr,
246 COLOR cet,
247 COLOR abt
248 )
249 {
250 RAY sray;
251 const RAY *entray;
252 FVECT v1, v2, n1, n2;
253 FVECT dv, v2Xdv;
254 double v2Xdvv2Xdv;
255 int success = 0;
256 SRCINDEX si;
257 FVECT vtmp1, vtmp2;
258 double dtmp1, dtmp2;
259 int l1, l2;
260 COLOR ctmp;
261 int i;
262
263 /*
264 * This routine computes dispersion to the first order using
265 * the following assumptions:
266 *
267 * 1) The dependency of the index of refraction on wavelength
268 * is approximated by Hartmann's equation with lambda0
269 * equal to zero.
270 * 2) The entry and exit locations are constant with respect
271 * to dispersion.
272 *
273 * The second assumption permits us to model dispersion without
274 * having to sample refracted directions. We assume that the
275 * geometry inside the material is constant, and concern ourselves
276 * only with the relationship between the entering and exiting ray.
277 * We compute the first derivatives of the entering and exiting
278 * refraction with respect to the index of refraction. This
279 * is then used in a first order Taylor series to determine the
280 * index of refraction necessary to send the exiting ray to each
281 * light source.
282 * If an exiting ray hits a light source within the refraction
283 * boundaries, we sum all the frequencies over the disc of the
284 * light source to determine the resulting color. A smaller light
285 * source will therefore exhibit a sharper spectrum.
286 */
287
288 if (!(r->crtype & REFRACTED)) { /* ray started in material */
289 VCOPY(v1, r->rdir);
290 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
291 } else {
292 /* find entry point */
293 for (entray = r; entray->rtype != REFRACTED;
294 entray = entray->parent)
295 ;
296 entray = entray->parent;
297 if (entray->crtype & REFRACTED) /* too difficult */
298 return(0);
299 VCOPY(v1, entray->rdir);
300 VCOPY(n1, entray->ron);
301 }
302 VCOPY(v2, vt); /* exiting ray */
303 VCOPY(n2, r->ron);
304
305 /* first order dispersion approx. */
306 dtmp1 = 1./DOT(n1, v1);
307 dtmp2 = 1./DOT(n2, v2);
308 for (i = 0; i < 3; i++)
309 dv[i] = v1[i] + v2[i] - n1[i]*dtmp1 - n2[i]*dtmp2;
310
311 if (DOT(dv, dv) <= FTINY) /* null effect */
312 return(0);
313 /* compute plane normal */
314 fcross(v2Xdv, v2, dv);
315 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
316
317 /* check sources */
318 initsrcindex(&si);
319 while (srcray(&sray, r, &si)) {
320
321 if (DOT(sray.rdir, v2) < MINCOS)
322 continue; /* bad source */
323 /* adjust source ray */
324
325 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
326 sray.rdir[0] -= dtmp1 * v2Xdv[0];
327 sray.rdir[1] -= dtmp1 * v2Xdv[1];
328 sray.rdir[2] -= dtmp1 * v2Xdv[2];
329
330 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
331
332 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
333 continue;
334 /* trace source ray */
335 copycolor(sray.cext, cet);
336 copycolor(sray.albedo, abt);
337 normalize(sray.rdir);
338 rayvalue(&sray);
339 if (bright(sray.rcol) <= FTINY) /* missed it */
340 continue;
341
342 /*
343 * Compute spectral sum over diameter of source.
344 * First find directions for rays going to opposite
345 * sides of source, then compute wavelengths for each.
346 */
347
348 fcross(vtmp1, v2Xdv, sray.rdir);
349 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
350
351 /* compute first ray */
352 VSUM(vtmp2, sray.rdir, vtmp1, dtmp1);
353
354 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
355 if (l1 < 0)
356 continue;
357 /* compute second ray */
358 VSUM(vtmp2, sray.rdir, vtmp1, -dtmp1);
359
360 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
361 if (l2 < 0)
362 continue;
363 /* compute color from spectrum */
364 if (l1 < l2)
365 spec_rgb(ctmp, l1, l2);
366 else
367 spec_rgb(ctmp, l2, l1);
368 multcolor(ctmp, sray.rcol);
369 scalecolor(ctmp, tr);
370 addcolor(r->rcol, ctmp);
371 success++;
372 }
373 return(success);
374 }
375
376
377 static int
378 lambda( /* compute lambda for material */
379 OBJREC *m,
380 FVECT v2,
381 FVECT dv,
382 FVECT lr
383 )
384 {
385 FVECT lrXdv, v2Xlr;
386 double dtmp, denom;
387 int i;
388
389 fcross(lrXdv, lr, dv);
390 for (i = 0; i < 3; i++)
391 if ((lrXdv[i] > FTINY) | (lrXdv[i] < -FTINY))
392 break;
393 if (i >= 3)
394 return(-1);
395
396 fcross(v2Xlr, v2, lr);
397
398 dtmp = m->oargs.farg[4] / MLAMBDA;
399 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
400
401 if (denom < FTINY)
402 return(-1);
403
404 return(m->oargs.farg[4] / denom);
405 }
406
407 #endif /* DISPERSE */