ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.28
Committed: Wed Oct 28 15:45:58 2015 UTC (8 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2, rad5R1
Changes since 2.27: +2 -2 lines
Log Message:
Added back ambient ray testing for photon map, which is needed by rcontrib

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: dielectric.c,v 2.27 2015/05/21 13:54:59 greg Exp $";
3 #endif
4 /*
5 * dielectric.c - shading function for transparent materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "rtotypes.h"
13 #include "pmapmat.h"
14
15 #ifdef DISPERSE
16 #include "source.h"
17 static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt);
18 static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr);
19 #endif
20
21 static double mylog(double x);
22
23
24 /*
25 * Explicit calculations for Fresnel's equation are performed,
26 * but only one square root computation is necessary.
27 * The index of refraction is given as a Hartmann equation
28 * with lambda0 equal to zero. If the slope of Hartmann's
29 * equation is non-zero, the material disperses light upon
30 * refraction. This condition is examined on rays traced to
31 * light sources. If a ray is exiting a dielectric material, we
32 * check the sources to see if any would cause bright color to be
33 * directed to the viewer due to dispersion. This gives colorful
34 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
35 *
36 * Arguments for MAT_DIELECTRIC are:
37 * red grn blu rndx Hartmann
38 *
39 * Arguments for MAT_INTERFACE are:
40 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
41 *
42 * The primaries are material transmission per unit length.
43 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
44 * outside.
45 */
46
47
48 #define MLAMBDA 500 /* mean lambda */
49 #define MAXLAMBDA 779 /* maximum lambda */
50 #define MINLAMBDA 380 /* minimum lambda */
51
52 #define MINCOS 0.997 /* minimum dot product for dispersion */
53
54 static double
55 mylog( /* special log for extinction coefficients */
56 double x
57 )
58 {
59 if (x < 1e-40)
60 return(-100.);
61 if (x >= 1.)
62 return(0.);
63 return(log(x));
64 }
65
66
67 int
68 m_dielectric( /* color a ray which hit a dielectric interface */
69 OBJREC *m,
70 RAY *r
71 )
72 {
73 double cos1, cos2, nratio;
74 COLOR ctrans;
75 COLOR talb;
76 int hastexture;
77 double transdist=0, transtest=0;
78 double mirdist=0, mirtest=0;
79 int flatsurface;
80 double refl, trans;
81 FVECT dnorm;
82 double d1, d2;
83 RAY p;
84 int i;
85
86 /* PMAP: skip refracted shadow or ambient ray if accounted for in
87 photon map */
88 if (shadowRayInPmap(r) || ambRayInPmap(r))
89 return(1);
90
91 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
92 objerror(m, USER, "bad arguments");
93
94 raytexture(r, m->omod); /* get modifiers */
95
96 if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
97 cos1 = raynormal(dnorm, r); /* perturb normal */
98 else {
99 VCOPY(dnorm, r->ron);
100 cos1 = r->rod;
101 }
102 flatsurface = r->ro != NULL && isflat(r->ro->otype) &&
103 !hastexture | (r->crtype & AMBIENT);
104
105 /* index of refraction */
106 if (m->otype == MAT_DIELECTRIC)
107 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
108 else
109 nratio = m->oargs.farg[3] / m->oargs.farg[7];
110
111 if (cos1 < 0.0) { /* inside */
112 hastexture = -hastexture;
113 cos1 = -cos1;
114 dnorm[0] = -dnorm[0];
115 dnorm[1] = -dnorm[1];
116 dnorm[2] = -dnorm[2];
117 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
118 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
119 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
120 setcolor(r->albedo, 0., 0., 0.);
121 r->gecc = 0.;
122 if (m->otype == MAT_INTERFACE) {
123 setcolor(ctrans,
124 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
125 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
126 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
127 setcolor(talb, 0., 0., 0.);
128 } else {
129 copycolor(ctrans, cextinction);
130 copycolor(talb, salbedo);
131 }
132 } else { /* outside */
133 nratio = 1.0 / nratio;
134
135 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
136 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
137 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
138 setcolor(talb, 0., 0., 0.);
139 if (m->otype == MAT_INTERFACE) {
140 setcolor(r->cext,
141 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
142 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
143 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
144 setcolor(r->albedo, 0., 0., 0.);
145 r->gecc = 0.;
146 }
147 }
148
149 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
150
151 if (d2 < FTINY) /* total reflection */
152
153 refl = 1.0;
154
155 else { /* refraction occurs */
156 /* compute Fresnel's equations */
157 cos2 = sqrt(d2);
158 d1 = cos1;
159 d2 = nratio*cos2;
160 d1 = (d1 - d2) / (d1 + d2);
161 refl = d1 * d1;
162
163 d1 = 1.0 / cos1;
164 d2 = nratio / cos2;
165 d1 = (d1 - d2) / (d1 + d2);
166 refl += d1 * d1;
167
168 refl *= 0.5;
169 trans = 1.0 - refl;
170
171 trans *= nratio*nratio; /* solid angle ratio */
172
173 setcolor(p.rcoef, trans, trans, trans);
174
175 if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) {
176
177 /* compute refracted ray */
178 d1 = nratio*cos1 - cos2;
179 for (i = 0; i < 3; i++)
180 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
181 /* accidental reflection? */
182 if (hastexture &&
183 DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
184 d1 *= (double)hastexture;
185 for (i = 0; i < 3; i++) /* ignore texture */
186 p.rdir[i] = nratio*r->rdir[i] +
187 d1*r->ron[i];
188 normalize(p.rdir); /* not exact */
189 } else
190 checknorm(p.rdir);
191 #ifdef DISPERSE
192 if (m->otype != MAT_DIELECTRIC
193 || r->rod > 0.0
194 || r->crtype & SHADOW
195 || !directvis
196 || m->oargs.farg[4] == 0.0
197 || !disperse(m, r, p.rdir,
198 trans, ctrans, talb))
199 #endif
200 {
201 copycolor(p.cext, ctrans);
202 copycolor(p.albedo, talb);
203 rayvalue(&p);
204 multcolor(p.rcol, p.rcoef);
205 addcolor(r->rcol, p.rcol);
206 /* virtual distance */
207 if (flatsurface ||
208 (1.-FTINY <= nratio) &
209 (nratio <= 1.+FTINY)) {
210 transtest = 2*bright(p.rcol);
211 transdist = r->rot + p.rt;
212 }
213 }
214 }
215 }
216 setcolor(p.rcoef, refl, refl, refl);
217
218 if (!(r->crtype & SHADOW) &&
219 rayorigin(&p, REFLECTED, r, p.rcoef) == 0) {
220
221 /* compute reflected ray */
222 VSUM(p.rdir, r->rdir, dnorm, 2.*cos1);
223 /* accidental penetration? */
224 if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
225 VSUM(p.rdir, r->rdir, r->ron, 2.*r->rod);
226 checknorm(p.rdir);
227 rayvalue(&p); /* reflected ray value */
228
229 multcolor(p.rcol, p.rcoef); /* color contribution */
230 addcolor(r->rcol, p.rcol);
231 /* virtual distance */
232 if (flatsurface) {
233 mirtest = 2*bright(p.rcol);
234 mirdist = r->rot + p.rt;
235 }
236 }
237 /* check distance to return */
238 d1 = bright(r->rcol);
239 if (transtest > d1)
240 r->rt = transdist;
241 else if (mirtest > d1)
242 r->rt = mirdist;
243 /* rayvalue() computes absorption */
244 return(1);
245 }
246
247
248 #ifdef DISPERSE
249
250 static int
251 disperse( /* check light sources for dispersion */
252 OBJREC *m,
253 RAY *r,
254 FVECT vt,
255 double tr,
256 COLOR cet,
257 COLOR abt
258 )
259 {
260 RAY sray;
261 const RAY *entray;
262 FVECT v1, v2, n1, n2;
263 FVECT dv, v2Xdv;
264 double v2Xdvv2Xdv;
265 int success = 0;
266 SRCINDEX si;
267 FVECT vtmp1, vtmp2;
268 double dtmp1, dtmp2;
269 int l1, l2;
270 COLOR ctmp;
271 int i;
272
273 /*
274 * This routine computes dispersion to the first order using
275 * the following assumptions:
276 *
277 * 1) The dependency of the index of refraction on wavelength
278 * is approximated by Hartmann's equation with lambda0
279 * equal to zero.
280 * 2) The entry and exit locations are constant with respect
281 * to dispersion.
282 *
283 * The second assumption permits us to model dispersion without
284 * having to sample refracted directions. We assume that the
285 * geometry inside the material is constant, and concern ourselves
286 * only with the relationship between the entering and exiting ray.
287 * We compute the first derivatives of the entering and exiting
288 * refraction with respect to the index of refraction. This
289 * is then used in a first order Taylor series to determine the
290 * index of refraction necessary to send the exiting ray to each
291 * light source.
292 * If an exiting ray hits a light source within the refraction
293 * boundaries, we sum all the frequencies over the disc of the
294 * light source to determine the resulting color. A smaller light
295 * source will therefore exhibit a sharper spectrum.
296 */
297
298 if (!(r->crtype & REFRACTED)) { /* ray started in material */
299 VCOPY(v1, r->rdir);
300 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
301 } else {
302 /* find entry point */
303 for (entray = r; entray->rtype != REFRACTED;
304 entray = entray->parent)
305 ;
306 entray = entray->parent;
307 if (entray->crtype & REFRACTED) /* too difficult */
308 return(0);
309 VCOPY(v1, entray->rdir);
310 VCOPY(n1, entray->ron);
311 }
312 VCOPY(v2, vt); /* exiting ray */
313 VCOPY(n2, r->ron);
314
315 /* first order dispersion approx. */
316 dtmp1 = 1./DOT(n1, v1);
317 dtmp2 = 1./DOT(n2, v2);
318 for (i = 0; i < 3; i++)
319 dv[i] = v1[i] + v2[i] - n1[i]*dtmp1 - n2[i]*dtmp2;
320
321 if (DOT(dv, dv) <= FTINY) /* null effect */
322 return(0);
323 /* compute plane normal */
324 fcross(v2Xdv, v2, dv);
325 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
326
327 /* check sources */
328 initsrcindex(&si);
329 while (srcray(&sray, r, &si)) {
330
331 if (DOT(sray.rdir, v2) < MINCOS)
332 continue; /* bad source */
333 /* adjust source ray */
334
335 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
336 sray.rdir[0] -= dtmp1 * v2Xdv[0];
337 sray.rdir[1] -= dtmp1 * v2Xdv[1];
338 sray.rdir[2] -= dtmp1 * v2Xdv[2];
339
340 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
341
342 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
343 continue;
344 /* trace source ray */
345 copycolor(sray.cext, cet);
346 copycolor(sray.albedo, abt);
347 normalize(sray.rdir);
348 rayvalue(&sray);
349 if (bright(sray.rcol) <= FTINY) /* missed it */
350 continue;
351
352 /*
353 * Compute spectral sum over diameter of source.
354 * First find directions for rays going to opposite
355 * sides of source, then compute wavelengths for each.
356 */
357
358 fcross(vtmp1, v2Xdv, sray.rdir);
359 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
360
361 /* compute first ray */
362 VSUM(vtmp2, sray.rdir, vtmp1, dtmp1);
363
364 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
365 if (l1 < 0)
366 continue;
367 /* compute second ray */
368 VSUM(vtmp2, sray.rdir, vtmp1, -dtmp1);
369
370 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
371 if (l2 < 0)
372 continue;
373 /* compute color from spectrum */
374 if (l1 < l2)
375 spec_rgb(ctmp, l1, l2);
376 else
377 spec_rgb(ctmp, l2, l1);
378 multcolor(ctmp, sray.rcol);
379 scalecolor(ctmp, tr);
380 addcolor(r->rcol, ctmp);
381 success++;
382 }
383 return(success);
384 }
385
386
387 static int
388 lambda( /* compute lambda for material */
389 OBJREC *m,
390 FVECT v2,
391 FVECT dv,
392 FVECT lr
393 )
394 {
395 FVECT lrXdv, v2Xlr;
396 double dtmp, denom;
397 int i;
398
399 fcross(lrXdv, lr, dv);
400 for (i = 0; i < 3; i++)
401 if ((lrXdv[i] > FTINY) | (lrXdv[i] < -FTINY))
402 break;
403 if (i >= 3)
404 return(-1);
405
406 fcross(v2Xlr, v2, lr);
407
408 dtmp = m->oargs.farg[4] / MLAMBDA;
409 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
410
411 if (denom < FTINY)
412 return(-1);
413
414 return(m->oargs.farg[4] / denom);
415 }
416
417 #endif /* DISPERSE */