ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.21
Committed: Sun Sep 26 15:51:15 2010 UTC (13 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.20: +4 -3 lines
Log Message:
Added checknorm() macro to avoid normalization errors with gcc --fast-math

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: dielectric.c,v 2.20 2005/04/19 01:15:06 greg Exp $";
3 #endif
4 /*
5 * dielectric.c - shading function for transparent materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "rtotypes.h"
13
14 #ifdef DISPERSE
15 #include "source.h"
16 static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt);
17 static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr);
18 #endif
19
20 static double mylog(double x);
21
22
23 /*
24 * Explicit calculations for Fresnel's equation are performed,
25 * but only one square root computation is necessary.
26 * The index of refraction is given as a Hartmann equation
27 * with lambda0 equal to zero. If the slope of Hartmann's
28 * equation is non-zero, the material disperses light upon
29 * refraction. This condition is examined on rays traced to
30 * light sources. If a ray is exiting a dielectric material, we
31 * check the sources to see if any would cause bright color to be
32 * directed to the viewer due to dispersion. This gives colorful
33 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
34 *
35 * Arguments for MAT_DIELECTRIC are:
36 * red grn blu rndx Hartmann
37 *
38 * Arguments for MAT_INTERFACE are:
39 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
40 *
41 * The primaries are material transmission per unit length.
42 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
43 * outside.
44 */
45
46
47 #define MLAMBDA 500 /* mean lambda */
48 #define MAXLAMBDA 779 /* maximum lambda */
49 #define MINLAMBDA 380 /* minimum lambda */
50
51 #define MINCOS 0.997 /* minimum dot product for dispersion */
52
53
54 static double
55 mylog( /* special log for extinction coefficients */
56 double x
57 )
58 {
59 if (x < 1e-40)
60 return(-100.);
61 if (x >= 1.)
62 return(0.);
63 return(log(x));
64 }
65
66
67 extern int
68 m_dielectric( /* color a ray which hit a dielectric interface */
69 OBJREC *m,
70 register RAY *r
71 )
72 {
73 double cos1, cos2, nratio;
74 COLOR ctrans;
75 COLOR talb;
76 int hastexture;
77 double transdist, transtest=0;
78 double mirdist, mirtest=0;
79 int flatsurface;
80 double refl, trans;
81 FVECT dnorm;
82 double d1, d2;
83 RAY p;
84 register int i;
85
86 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
87 objerror(m, USER, "bad arguments");
88
89 raytexture(r, m->omod); /* get modifiers */
90
91 if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
92 cos1 = raynormal(dnorm, r); /* perturb normal */
93 else {
94 VCOPY(dnorm, r->ron);
95 cos1 = r->rod;
96 }
97 flatsurface = !hastexture && r->ro != NULL && isflat(r->ro->otype);
98
99 /* index of refraction */
100 if (m->otype == MAT_DIELECTRIC)
101 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
102 else
103 nratio = m->oargs.farg[3] / m->oargs.farg[7];
104
105 if (cos1 < 0.0) { /* inside */
106 hastexture = -hastexture;
107 cos1 = -cos1;
108 dnorm[0] = -dnorm[0];
109 dnorm[1] = -dnorm[1];
110 dnorm[2] = -dnorm[2];
111 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
112 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
113 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
114 setcolor(r->albedo, 0., 0., 0.);
115 r->gecc = 0.;
116 if (m->otype == MAT_INTERFACE) {
117 setcolor(ctrans,
118 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
119 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
120 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
121 setcolor(talb, 0., 0., 0.);
122 } else {
123 copycolor(ctrans, cextinction);
124 copycolor(talb, salbedo);
125 }
126 } else { /* outside */
127 nratio = 1.0 / nratio;
128
129 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
130 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
131 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
132 setcolor(talb, 0., 0., 0.);
133 if (m->otype == MAT_INTERFACE) {
134 setcolor(r->cext,
135 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
136 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
137 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
138 setcolor(r->albedo, 0., 0., 0.);
139 r->gecc = 0.;
140 }
141 }
142
143 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
144
145 if (d2 < FTINY) /* total reflection */
146
147 refl = 1.0;
148
149 else { /* refraction occurs */
150 /* compute Fresnel's equations */
151 cos2 = sqrt(d2);
152 d1 = cos1;
153 d2 = nratio*cos2;
154 d1 = (d1 - d2) / (d1 + d2);
155 refl = d1 * d1;
156
157 d1 = 1.0 / cos1;
158 d2 = nratio / cos2;
159 d1 = (d1 - d2) / (d1 + d2);
160 refl += d1 * d1;
161
162 refl *= 0.5;
163 trans = 1.0 - refl;
164
165 trans *= nratio*nratio; /* solid angle ratio */
166
167 setcolor(p.rcoef, trans, trans, trans);
168
169 if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) {
170
171 /* compute refracted ray */
172 d1 = nratio*cos1 - cos2;
173 for (i = 0; i < 3; i++)
174 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
175 /* accidental reflection? */
176 if (hastexture &&
177 DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
178 d1 *= (double)hastexture;
179 for (i = 0; i < 3; i++) /* ignore texture */
180 p.rdir[i] = nratio*r->rdir[i] +
181 d1*r->ron[i];
182 normalize(p.rdir); /* not exact */
183 } else
184 checknorm(p.rdir);
185 #ifdef DISPERSE
186 if (m->otype != MAT_DIELECTRIC
187 || r->rod > 0.0
188 || r->crtype & SHADOW
189 || !directvis
190 || m->oargs.farg[4] == 0.0
191 || !disperse(m, r, p.rdir,
192 trans, ctrans, talb))
193 #endif
194 {
195 copycolor(p.cext, ctrans);
196 copycolor(p.albedo, talb);
197 rayvalue(&p);
198 multcolor(p.rcol, p.rcoef);
199 addcolor(r->rcol, p.rcol);
200 /* virtual distance */
201 if (flatsurface ||
202 (1.-FTINY <= nratio &&
203 nratio <= 1.+FTINY)) {
204 transtest = 2*bright(p.rcol);
205 transdist = r->rot + p.rt;
206 }
207 }
208 }
209 }
210 setcolor(p.rcoef, refl, refl, refl);
211
212 if (!(r->crtype & SHADOW) &&
213 rayorigin(&p, REFLECTED, r, p.rcoef) == 0) {
214
215 /* compute reflected ray */
216 for (i = 0; i < 3; i++)
217 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
218 /* accidental penetration? */
219 if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
220 for (i = 0; i < 3; i++) /* ignore texture */
221 p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i];
222 checknorm(p.rdir);
223 rayvalue(&p); /* reflected ray value */
224
225 multcolor(p.rcol, p.rcoef); /* color contribution */
226 addcolor(r->rcol, p.rcol);
227 /* virtual distance */
228 if (flatsurface) {
229 mirtest = 2*bright(p.rcol);
230 mirdist = r->rot + p.rt;
231 }
232 }
233 /* check distance to return */
234 d1 = bright(r->rcol);
235 if (transtest > d1)
236 r->rt = transdist;
237 else if (mirtest > d1)
238 r->rt = mirdist;
239 /* rayvalue() computes absorption */
240 return(1);
241 }
242
243
244 #ifdef DISPERSE
245
246 static int
247 disperse( /* check light sources for dispersion */
248 OBJREC *m,
249 RAY *r,
250 FVECT vt,
251 double tr,
252 COLOR cet,
253 COLOR abt
254 )
255 {
256 RAY sray;
257 const RAY *entray;
258 FVECT v1, v2, n1, n2;
259 FVECT dv, v2Xdv;
260 double v2Xdvv2Xdv;
261 int success = 0;
262 SRCINDEX si;
263 FVECT vtmp1, vtmp2;
264 double dtmp1, dtmp2;
265 int l1, l2;
266 COLOR ctmp;
267 int i;
268
269 /*
270 * This routine computes dispersion to the first order using
271 * the following assumptions:
272 *
273 * 1) The dependency of the index of refraction on wavelength
274 * is approximated by Hartmann's equation with lambda0
275 * equal to zero.
276 * 2) The entry and exit locations are constant with respect
277 * to dispersion.
278 *
279 * The second assumption permits us to model dispersion without
280 * having to sample refracted directions. We assume that the
281 * geometry inside the material is constant, and concern ourselves
282 * only with the relationship between the entering and exiting ray.
283 * We compute the first derivatives of the entering and exiting
284 * refraction with respect to the index of refraction. This
285 * is then used in a first order Taylor series to determine the
286 * index of refraction necessary to send the exiting ray to each
287 * light source.
288 * If an exiting ray hits a light source within the refraction
289 * boundaries, we sum all the frequencies over the disc of the
290 * light source to determine the resulting color. A smaller light
291 * source will therefore exhibit a sharper spectrum.
292 */
293
294 if (!(r->crtype & REFRACTED)) { /* ray started in material */
295 VCOPY(v1, r->rdir);
296 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
297 } else {
298 /* find entry point */
299 for (entray = r; entray->rtype != REFRACTED;
300 entray = entray->parent)
301 ;
302 entray = entray->parent;
303 if (entray->crtype & REFRACTED) /* too difficult */
304 return(0);
305 VCOPY(v1, entray->rdir);
306 VCOPY(n1, entray->ron);
307 }
308 VCOPY(v2, vt); /* exiting ray */
309 VCOPY(n2, r->ron);
310
311 /* first order dispersion approx. */
312 dtmp1 = DOT(n1, v1);
313 dtmp2 = DOT(n2, v2);
314 for (i = 0; i < 3; i++)
315 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
316
317 if (DOT(dv, dv) <= FTINY) /* null effect */
318 return(0);
319 /* compute plane normal */
320 fcross(v2Xdv, v2, dv);
321 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
322
323 /* check sources */
324 initsrcindex(&si);
325 while (srcray(&sray, r, &si)) {
326
327 if (DOT(sray.rdir, v2) < MINCOS)
328 continue; /* bad source */
329 /* adjust source ray */
330
331 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
332 sray.rdir[0] -= dtmp1 * v2Xdv[0];
333 sray.rdir[1] -= dtmp1 * v2Xdv[1];
334 sray.rdir[2] -= dtmp1 * v2Xdv[2];
335
336 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
337
338 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
339 continue;
340 /* trace source ray */
341 copycolor(sray.cext, cet);
342 copycolor(sray.albedo, abt);
343 normalize(sray.rdir);
344 rayvalue(&sray);
345 if (bright(sray.rcol) <= FTINY) /* missed it */
346 continue;
347
348 /*
349 * Compute spectral sum over diameter of source.
350 * First find directions for rays going to opposite
351 * sides of source, then compute wavelengths for each.
352 */
353
354 fcross(vtmp1, v2Xdv, sray.rdir);
355 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
356
357 /* compute first ray */
358 for (i = 0; i < 3; i++)
359 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
360
361 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
362 if (l1 < 0)
363 continue;
364 /* compute second ray */
365 for (i = 0; i < 3; i++)
366 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
367
368 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
369 if (l2 < 0)
370 continue;
371 /* compute color from spectrum */
372 if (l1 < l2)
373 spec_rgb(ctmp, l1, l2);
374 else
375 spec_rgb(ctmp, l2, l1);
376 multcolor(ctmp, sray.rcol);
377 scalecolor(ctmp, tr);
378 addcolor(r->rcol, ctmp);
379 success++;
380 }
381 return(success);
382 }
383
384
385 static int
386 lambda( /* compute lambda for material */
387 register OBJREC *m,
388 FVECT v2,
389 FVECT dv,
390 FVECT lr
391 )
392 {
393 FVECT lrXdv, v2Xlr;
394 double dtmp, denom;
395 int i;
396
397 fcross(lrXdv, lr, dv);
398 for (i = 0; i < 3; i++)
399 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
400 break;
401 if (i >= 3)
402 return(-1);
403
404 fcross(v2Xlr, v2, lr);
405
406 dtmp = m->oargs.farg[4] / MLAMBDA;
407 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
408
409 if (denom < FTINY)
410 return(-1);
411
412 return(m->oargs.farg[4] / denom);
413 }
414
415 #endif /* DISPERSE */