ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.20
Committed: Tue Apr 19 01:15:06 2005 UTC (19 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1, rad4R0, rad3R8, rad3R9
Changes since 2.19: +11 -7 lines
Log Message:
Extensive changes to enable rtrace -oTW option for tracking ray contributions

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: dielectric.c,v 2.19 2004/09/09 06:46:07 greg Exp $";
3 #endif
4 /*
5 * dielectric.c - shading function for transparent materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "rtotypes.h"
13
14 #ifdef DISPERSE
15 #include "source.h"
16 static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt);
17 static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr);
18 #endif
19
20 static double mylog(double x);
21
22
23 /*
24 * Explicit calculations for Fresnel's equation are performed,
25 * but only one square root computation is necessary.
26 * The index of refraction is given as a Hartmann equation
27 * with lambda0 equal to zero. If the slope of Hartmann's
28 * equation is non-zero, the material disperses light upon
29 * refraction. This condition is examined on rays traced to
30 * light sources. If a ray is exiting a dielectric material, we
31 * check the sources to see if any would cause bright color to be
32 * directed to the viewer due to dispersion. This gives colorful
33 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
34 *
35 * Arguments for MAT_DIELECTRIC are:
36 * red grn blu rndx Hartmann
37 *
38 * Arguments for MAT_INTERFACE are:
39 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
40 *
41 * The primaries are material transmission per unit length.
42 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
43 * outside.
44 */
45
46
47 #define MLAMBDA 500 /* mean lambda */
48 #define MAXLAMBDA 779 /* maximum lambda */
49 #define MINLAMBDA 380 /* minimum lambda */
50
51 #define MINCOS 0.997 /* minimum dot product for dispersion */
52
53
54 static double
55 mylog( /* special log for extinction coefficients */
56 double x
57 )
58 {
59 if (x < 1e-40)
60 return(-100.);
61 if (x >= 1.)
62 return(0.);
63 return(log(x));
64 }
65
66
67 extern int
68 m_dielectric( /* color a ray which hit a dielectric interface */
69 OBJREC *m,
70 register RAY *r
71 )
72 {
73 double cos1, cos2, nratio;
74 COLOR ctrans;
75 COLOR talb;
76 int hastexture;
77 double transdist, transtest=0;
78 double mirdist, mirtest=0;
79 int flatsurface;
80 double refl, trans;
81 FVECT dnorm;
82 double d1, d2;
83 RAY p;
84 register int i;
85
86 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
87 objerror(m, USER, "bad arguments");
88
89 raytexture(r, m->omod); /* get modifiers */
90
91 if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
92 cos1 = raynormal(dnorm, r); /* perturb normal */
93 else {
94 VCOPY(dnorm, r->ron);
95 cos1 = r->rod;
96 }
97 flatsurface = !hastexture && r->ro != NULL && isflat(r->ro->otype);
98
99 /* index of refraction */
100 if (m->otype == MAT_DIELECTRIC)
101 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
102 else
103 nratio = m->oargs.farg[3] / m->oargs.farg[7];
104
105 if (cos1 < 0.0) { /* inside */
106 hastexture = -hastexture;
107 cos1 = -cos1;
108 dnorm[0] = -dnorm[0];
109 dnorm[1] = -dnorm[1];
110 dnorm[2] = -dnorm[2];
111 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
112 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
113 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
114 setcolor(r->albedo, 0., 0., 0.);
115 r->gecc = 0.;
116 if (m->otype == MAT_INTERFACE) {
117 setcolor(ctrans,
118 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
119 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
120 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
121 setcolor(talb, 0., 0., 0.);
122 } else {
123 copycolor(ctrans, cextinction);
124 copycolor(talb, salbedo);
125 }
126 } else { /* outside */
127 nratio = 1.0 / nratio;
128
129 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
130 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
131 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
132 setcolor(talb, 0., 0., 0.);
133 if (m->otype == MAT_INTERFACE) {
134 setcolor(r->cext,
135 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
136 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
137 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
138 setcolor(r->albedo, 0., 0., 0.);
139 r->gecc = 0.;
140 }
141 }
142
143 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
144
145 if (d2 < FTINY) /* total reflection */
146
147 refl = 1.0;
148
149 else { /* refraction occurs */
150 /* compute Fresnel's equations */
151 cos2 = sqrt(d2);
152 d1 = cos1;
153 d2 = nratio*cos2;
154 d1 = (d1 - d2) / (d1 + d2);
155 refl = d1 * d1;
156
157 d1 = 1.0 / cos1;
158 d2 = nratio / cos2;
159 d1 = (d1 - d2) / (d1 + d2);
160 refl += d1 * d1;
161
162 refl *= 0.5;
163 trans = 1.0 - refl;
164
165 trans *= nratio*nratio; /* solid angle ratio */
166
167 setcolor(p.rcoef, trans, trans, trans);
168
169 if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) {
170
171 /* compute refracted ray */
172 d1 = nratio*cos1 - cos2;
173 for (i = 0; i < 3; i++)
174 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
175 /* accidental reflection? */
176 if (hastexture &&
177 DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
178 d1 *= (double)hastexture;
179 for (i = 0; i < 3; i++) /* ignore texture */
180 p.rdir[i] = nratio*r->rdir[i] +
181 d1*r->ron[i];
182 normalize(p.rdir); /* not exact */
183 }
184 #ifdef DISPERSE
185 if (m->otype != MAT_DIELECTRIC
186 || r->rod > 0.0
187 || r->crtype & SHADOW
188 || !directvis
189 || m->oargs.farg[4] == 0.0
190 || !disperse(m, r, p.rdir,
191 trans, ctrans, talb))
192 #endif
193 {
194 copycolor(p.cext, ctrans);
195 copycolor(p.albedo, talb);
196 rayvalue(&p);
197 multcolor(p.rcol, p.rcoef);
198 addcolor(r->rcol, p.rcol);
199 /* virtual distance */
200 if (flatsurface ||
201 (1.-FTINY <= nratio &&
202 nratio <= 1.+FTINY)) {
203 transtest = 2*bright(p.rcol);
204 transdist = r->rot + p.rt;
205 }
206 }
207 }
208 }
209 setcolor(p.rcoef, refl, refl, refl);
210
211 if (!(r->crtype & SHADOW) &&
212 rayorigin(&p, REFLECTED, r, p.rcoef) == 0) {
213
214 /* compute reflected ray */
215 for (i = 0; i < 3; i++)
216 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
217 /* accidental penetration? */
218 if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
219 for (i = 0; i < 3; i++) /* ignore texture */
220 p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i];
221
222 rayvalue(&p); /* reflected ray value */
223
224 multcolor(p.rcol, p.rcoef); /* color contribution */
225 addcolor(r->rcol, p.rcol);
226 /* virtual distance */
227 if (flatsurface) {
228 mirtest = 2*bright(p.rcol);
229 mirdist = r->rot + p.rt;
230 }
231 }
232 /* check distance to return */
233 d1 = bright(r->rcol);
234 if (transtest > d1)
235 r->rt = transdist;
236 else if (mirtest > d1)
237 r->rt = mirdist;
238 /* rayvalue() computes absorption */
239 return(1);
240 }
241
242
243 #ifdef DISPERSE
244
245 static int
246 disperse( /* check light sources for dispersion */
247 OBJREC *m,
248 RAY *r,
249 FVECT vt,
250 double tr,
251 COLOR cet,
252 COLOR abt
253 )
254 {
255 RAY sray;
256 const RAY *entray;
257 FVECT v1, v2, n1, n2;
258 FVECT dv, v2Xdv;
259 double v2Xdvv2Xdv;
260 int success = 0;
261 SRCINDEX si;
262 FVECT vtmp1, vtmp2;
263 double dtmp1, dtmp2;
264 int l1, l2;
265 COLOR ctmp;
266 int i;
267
268 /*
269 * This routine computes dispersion to the first order using
270 * the following assumptions:
271 *
272 * 1) The dependency of the index of refraction on wavelength
273 * is approximated by Hartmann's equation with lambda0
274 * equal to zero.
275 * 2) The entry and exit locations are constant with respect
276 * to dispersion.
277 *
278 * The second assumption permits us to model dispersion without
279 * having to sample refracted directions. We assume that the
280 * geometry inside the material is constant, and concern ourselves
281 * only with the relationship between the entering and exiting ray.
282 * We compute the first derivatives of the entering and exiting
283 * refraction with respect to the index of refraction. This
284 * is then used in a first order Taylor series to determine the
285 * index of refraction necessary to send the exiting ray to each
286 * light source.
287 * If an exiting ray hits a light source within the refraction
288 * boundaries, we sum all the frequencies over the disc of the
289 * light source to determine the resulting color. A smaller light
290 * source will therefore exhibit a sharper spectrum.
291 */
292
293 if (!(r->crtype & REFRACTED)) { /* ray started in material */
294 VCOPY(v1, r->rdir);
295 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
296 } else {
297 /* find entry point */
298 for (entray = r; entray->rtype != REFRACTED;
299 entray = entray->parent)
300 ;
301 entray = entray->parent;
302 if (entray->crtype & REFRACTED) /* too difficult */
303 return(0);
304 VCOPY(v1, entray->rdir);
305 VCOPY(n1, entray->ron);
306 }
307 VCOPY(v2, vt); /* exiting ray */
308 VCOPY(n2, r->ron);
309
310 /* first order dispersion approx. */
311 dtmp1 = DOT(n1, v1);
312 dtmp2 = DOT(n2, v2);
313 for (i = 0; i < 3; i++)
314 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
315
316 if (DOT(dv, dv) <= FTINY) /* null effect */
317 return(0);
318 /* compute plane normal */
319 fcross(v2Xdv, v2, dv);
320 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
321
322 /* check sources */
323 initsrcindex(&si);
324 while (srcray(&sray, r, &si)) {
325
326 if (DOT(sray.rdir, v2) < MINCOS)
327 continue; /* bad source */
328 /* adjust source ray */
329
330 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
331 sray.rdir[0] -= dtmp1 * v2Xdv[0];
332 sray.rdir[1] -= dtmp1 * v2Xdv[1];
333 sray.rdir[2] -= dtmp1 * v2Xdv[2];
334
335 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
336
337 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
338 continue;
339 /* trace source ray */
340 copycolor(sray.cext, cet);
341 copycolor(sray.albedo, abt);
342 normalize(sray.rdir);
343 rayvalue(&sray);
344 if (bright(sray.rcol) <= FTINY) /* missed it */
345 continue;
346
347 /*
348 * Compute spectral sum over diameter of source.
349 * First find directions for rays going to opposite
350 * sides of source, then compute wavelengths for each.
351 */
352
353 fcross(vtmp1, v2Xdv, sray.rdir);
354 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
355
356 /* compute first ray */
357 for (i = 0; i < 3; i++)
358 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
359
360 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
361 if (l1 < 0)
362 continue;
363 /* compute second ray */
364 for (i = 0; i < 3; i++)
365 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
366
367 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
368 if (l2 < 0)
369 continue;
370 /* compute color from spectrum */
371 if (l1 < l2)
372 spec_rgb(ctmp, l1, l2);
373 else
374 spec_rgb(ctmp, l2, l1);
375 multcolor(ctmp, sray.rcol);
376 scalecolor(ctmp, tr);
377 addcolor(r->rcol, ctmp);
378 success++;
379 }
380 return(success);
381 }
382
383
384 static int
385 lambda( /* compute lambda for material */
386 register OBJREC *m,
387 FVECT v2,
388 FVECT dv,
389 FVECT lr
390 )
391 {
392 FVECT lrXdv, v2Xlr;
393 double dtmp, denom;
394 int i;
395
396 fcross(lrXdv, lr, dv);
397 for (i = 0; i < 3; i++)
398 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
399 break;
400 if (i >= 3)
401 return(-1);
402
403 fcross(v2Xlr, v2, lr);
404
405 dtmp = m->oargs.farg[4] / MLAMBDA;
406 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
407
408 if (denom < FTINY)
409 return(-1);
410
411 return(m->oargs.farg[4] / denom);
412 }
413
414 #endif /* DISPERSE */