#ifndef lint static const char RCSid[] = "$Id: dielectric.c,v 2.18 2004/03/30 16:13:01 schorsch Exp $"; #endif /* * dielectric.c - shading function for transparent materials. */ #include "copyright.h" #include "ray.h" #include "otypes.h" #include "rtotypes.h" #ifdef DISPERSE #include "source.h" static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt); static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr); #endif static double mylog(double x); /* * Explicit calculations for Fresnel's equation are performed, * but only one square root computation is necessary. * The index of refraction is given as a Hartmann equation * with lambda0 equal to zero. If the slope of Hartmann's * equation is non-zero, the material disperses light upon * refraction. This condition is examined on rays traced to * light sources. If a ray is exiting a dielectric material, we * check the sources to see if any would cause bright color to be * directed to the viewer due to dispersion. This gives colorful * sparkle to crystals, etc. (Only if DISPERSE is defined!) * * Arguments for MAT_DIELECTRIC are: * red grn blu rndx Hartmann * * Arguments for MAT_INTERFACE are: * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2 * * The primaries are material transmission per unit length. * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for * outside. */ #define MLAMBDA 500 /* mean lambda */ #define MAXLAMBDA 779 /* maximum lambda */ #define MINLAMBDA 380 /* minimum lambda */ #define MINCOS 0.997 /* minimum dot product for dispersion */ static double mylog( /* special log for extinction coefficients */ double x ) { if (x < 1e-40) return(-100.); if (x >= 1.) return(0.); return(log(x)); } extern int m_dielectric( /* color a ray which hit a dielectric interface */ OBJREC *m, register RAY *r ) { double cos1, cos2, nratio; COLOR ctrans; COLOR talb; int hastexture; double refl, trans; FVECT dnorm; double d1, d2; RAY p; register int i; if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8)) objerror(m, USER, "bad arguments"); raytexture(r, m->omod); /* get modifiers */ if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) ) cos1 = raynormal(dnorm, r); /* perturb normal */ else { VCOPY(dnorm, r->ron); cos1 = r->rod; } /* index of refraction */ if (m->otype == MAT_DIELECTRIC) nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA; else nratio = m->oargs.farg[3] / m->oargs.farg[7]; if (cos1 < 0.0) { /* inside */ hastexture = -hastexture; cos1 = -cos1; dnorm[0] = -dnorm[0]; dnorm[1] = -dnorm[1]; dnorm[2] = -dnorm[2]; setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)), -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)), -mylog(m->oargs.farg[2]*colval(r->pcol,BLU))); setcolor(r->albedo, 0., 0., 0.); r->gecc = 0.; if (m->otype == MAT_INTERFACE) { setcolor(ctrans, -mylog(m->oargs.farg[4]*colval(r->pcol,RED)), -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)), -mylog(m->oargs.farg[6]*colval(r->pcol,BLU))); setcolor(talb, 0., 0., 0.); } else { copycolor(ctrans, cextinction); copycolor(talb, salbedo); } } else { /* outside */ nratio = 1.0 / nratio; setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)), -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)), -mylog(m->oargs.farg[2]*colval(r->pcol,BLU))); setcolor(talb, 0., 0., 0.); if (m->otype == MAT_INTERFACE) { setcolor(r->cext, -mylog(m->oargs.farg[4]*colval(r->pcol,RED)), -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)), -mylog(m->oargs.farg[6]*colval(r->pcol,BLU))); setcolor(r->albedo, 0., 0., 0.); r->gecc = 0.; } } d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */ if (d2 < FTINY) /* total reflection */ refl = 1.0; else { /* refraction occurs */ /* compute Fresnel's equations */ cos2 = sqrt(d2); d1 = cos1; d2 = nratio*cos2; d1 = (d1 - d2) / (d1 + d2); refl = d1 * d1; d1 = 1.0 / cos1; d2 = nratio / cos2; d1 = (d1 - d2) / (d1 + d2); refl += d1 * d1; refl *= 0.5; trans = 1.0 - refl; trans *= nratio*nratio; /* solid angle ratio */ if (rayorigin(&p, r, REFRACTED, trans) == 0) { /* compute refracted ray */ d1 = nratio*cos1 - cos2; for (i = 0; i < 3; i++) p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i]; /* accidental reflection? */ if (hastexture && DOT(p.rdir,r->ron)*hastexture >= -FTINY) { d1 *= (double)hastexture; for (i = 0; i < 3; i++) /* ignore texture */ p.rdir[i] = nratio*r->rdir[i] + d1*r->ron[i]; normalize(p.rdir); /* not exact */ } #ifdef DISPERSE if (m->otype != MAT_DIELECTRIC || r->rod > 0.0 || r->crtype & SHADOW || !directvis || m->oargs.farg[4] == 0.0 || !disperse(m, r, p.rdir, trans, ctrans, talb)) #endif { copycolor(p.cext, ctrans); copycolor(p.albedo, talb); rayvalue(&p); scalecolor(p.rcol, trans); addcolor(r->rcol, p.rcol); if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY) r->rt = r->rot + p.rt; } } } if (!(r->crtype & SHADOW) && rayorigin(&p, r, REFLECTED, refl) == 0) { /* compute reflected ray */ for (i = 0; i < 3; i++) p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i]; /* accidental penetration? */ if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY) for (i = 0; i < 3; i++) /* ignore texture */ p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i]; rayvalue(&p); /* reflected ray value */ scalecolor(p.rcol, refl); /* color contribution */ addcolor(r->rcol, p.rcol); } /* rayvalue() computes absorption */ return(1); } #ifdef DISPERSE static int disperse( /* check light sources for dispersion */ OBJREC *m, RAY *r, FVECT vt, double tr, COLOR cet, COLOR abt ) { RAY sray, *entray; FVECT v1, v2, n1, n2; FVECT dv, v2Xdv; double v2Xdvv2Xdv; int success = 0; SRCINDEX si; FVECT vtmp1, vtmp2; double dtmp1, dtmp2; int l1, l2; COLOR ctmp; int i; /* * This routine computes dispersion to the first order using * the following assumptions: * * 1) The dependency of the index of refraction on wavelength * is approximated by Hartmann's equation with lambda0 * equal to zero. * 2) The entry and exit locations are constant with respect * to dispersion. * * The second assumption permits us to model dispersion without * having to sample refracted directions. We assume that the * geometry inside the material is constant, and concern ourselves * only with the relationship between the entering and exiting ray. * We compute the first derivatives of the entering and exiting * refraction with respect to the index of refraction. This * is then used in a first order Taylor series to determine the * index of refraction necessary to send the exiting ray to each * light source. * If an exiting ray hits a light source within the refraction * boundaries, we sum all the frequencies over the disc of the * light source to determine the resulting color. A smaller light * source will therefore exhibit a sharper spectrum. */ if (!(r->crtype & REFRACTED)) { /* ray started in material */ VCOPY(v1, r->rdir); n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2]; } else { /* find entry point */ for (entray = r; entray->rtype != REFRACTED; entray = entray->parent) ; entray = entray->parent; if (entray->crtype & REFRACTED) /* too difficult */ return(0); VCOPY(v1, entray->rdir); VCOPY(n1, entray->ron); } VCOPY(v2, vt); /* exiting ray */ VCOPY(n2, r->ron); /* first order dispersion approx. */ dtmp1 = DOT(n1, v1); dtmp2 = DOT(n2, v2); for (i = 0; i < 3; i++) dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2; if (DOT(dv, dv) <= FTINY) /* null effect */ return(0); /* compute plane normal */ fcross(v2Xdv, v2, dv); v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv); /* check sources */ initsrcindex(&si); while (srcray(&sray, r, &si)) { if (DOT(sray.rdir, v2) < MINCOS) continue; /* bad source */ /* adjust source ray */ dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv; sray.rdir[0] -= dtmp1 * v2Xdv[0]; sray.rdir[1] -= dtmp1 * v2Xdv[1]; sray.rdir[2] -= dtmp1 * v2Xdv[2]; l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */ if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */ continue; /* trace source ray */ copycolor(sray.cext, cet); copycolor(sray.albedo, abt); normalize(sray.rdir); rayvalue(&sray); if (bright(sray.rcol) <= FTINY) /* missed it */ continue; /* * Compute spectral sum over diameter of source. * First find directions for rays going to opposite * sides of source, then compute wavelengths for each. */ fcross(vtmp1, v2Xdv, sray.rdir); dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI); /* compute first ray */ for (i = 0; i < 3; i++) vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i]; l1 = lambda(m, v2, dv, vtmp2); /* first lambda */ if (l1 < 0) continue; /* compute second ray */ for (i = 0; i < 3; i++) vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i]; l2 = lambda(m, v2, dv, vtmp2); /* second lambda */ if (l2 < 0) continue; /* compute color from spectrum */ if (l1 < l2) spec_rgb(ctmp, l1, l2); else spec_rgb(ctmp, l2, l1); multcolor(ctmp, sray.rcol); scalecolor(ctmp, tr); addcolor(r->rcol, ctmp); success++; } return(success); } static int lambda( /* compute lambda for material */ register OBJREC *m, FVECT v2, FVECT dv, FVECT lr ) { FVECT lrXdv, v2Xlr; double dtmp, denom; int i; fcross(lrXdv, lr, dv); for (i = 0; i < 3; i++) if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY) break; if (i >= 3) return(-1); fcross(v2Xlr, v2, lr); dtmp = m->oargs.farg[4] / MLAMBDA; denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp); if (denom < FTINY) return(-1); return(m->oargs.farg[4] / denom); } #endif /* DISPERSE */