ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.16
Committed: Tue Feb 25 02:47:22 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R5
Changes since 2.15: +1 -56 lines
Log Message:
Replaced inline copyright notice with #include "copyright.h"

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * dielectric.c - shading function for transparent materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11
12 #include "otypes.h"
13
14 #ifdef DISPERSE
15 #include "source.h"
16 static disperse();
17 static int lambda();
18 #endif
19
20 /*
21 * Explicit calculations for Fresnel's equation are performed,
22 * but only one square root computation is necessary.
23 * The index of refraction is given as a Hartmann equation
24 * with lambda0 equal to zero. If the slope of Hartmann's
25 * equation is non-zero, the material disperses light upon
26 * refraction. This condition is examined on rays traced to
27 * light sources. If a ray is exiting a dielectric material, we
28 * check the sources to see if any would cause bright color to be
29 * directed to the viewer due to dispersion. This gives colorful
30 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
31 *
32 * Arguments for MAT_DIELECTRIC are:
33 * red grn blu rndx Hartmann
34 *
35 * Arguments for MAT_INTERFACE are:
36 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
37 *
38 * The primaries are material transmission per unit length.
39 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
40 * outside.
41 */
42
43
44 #define MLAMBDA 500 /* mean lambda */
45 #define MAXLAMBDA 779 /* maximum lambda */
46 #define MINLAMBDA 380 /* minimum lambda */
47
48 #define MINCOS 0.997 /* minimum dot product for dispersion */
49
50
51 static double
52 mylog(x) /* special log for extinction coefficients */
53 double x;
54 {
55 if (x < 1e-40)
56 return(-100.);
57 if (x >= 1.)
58 return(0.);
59 return(log(x));
60 }
61
62
63 m_dielectric(m, r) /* color a ray which hit a dielectric interface */
64 OBJREC *m;
65 register RAY *r;
66 {
67 double cos1, cos2, nratio;
68 COLOR ctrans;
69 COLOR talb;
70 int hastexture;
71 double refl, trans;
72 FVECT dnorm;
73 double d1, d2;
74 RAY p;
75 register int i;
76
77 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
78 objerror(m, USER, "bad arguments");
79
80 raytexture(r, m->omod); /* get modifiers */
81
82 if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
83 cos1 = raynormal(dnorm, r); /* perturb normal */
84 else {
85 VCOPY(dnorm, r->ron);
86 cos1 = r->rod;
87 }
88 /* index of refraction */
89 if (m->otype == MAT_DIELECTRIC)
90 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
91 else
92 nratio = m->oargs.farg[3] / m->oargs.farg[7];
93
94 if (cos1 < 0.0) { /* inside */
95 hastexture = -hastexture;
96 cos1 = -cos1;
97 dnorm[0] = -dnorm[0];
98 dnorm[1] = -dnorm[1];
99 dnorm[2] = -dnorm[2];
100 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
101 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
102 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
103 setcolor(r->albedo, 0., 0., 0.);
104 r->gecc = 0.;
105 if (m->otype == MAT_INTERFACE) {
106 setcolor(ctrans,
107 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
108 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
109 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
110 setcolor(talb, 0., 0., 0.);
111 } else {
112 copycolor(ctrans, cextinction);
113 copycolor(talb, salbedo);
114 }
115 } else { /* outside */
116 nratio = 1.0 / nratio;
117
118 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
119 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
120 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
121 setcolor(talb, 0., 0., 0.);
122 if (m->otype == MAT_INTERFACE) {
123 setcolor(r->cext,
124 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
125 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
126 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
127 setcolor(r->albedo, 0., 0., 0.);
128 r->gecc = 0.;
129 }
130 }
131
132 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
133
134 if (d2 < FTINY) /* total reflection */
135
136 refl = 1.0;
137
138 else { /* refraction occurs */
139 /* compute Fresnel's equations */
140 cos2 = sqrt(d2);
141 d1 = cos1;
142 d2 = nratio*cos2;
143 d1 = (d1 - d2) / (d1 + d2);
144 refl = d1 * d1;
145
146 d1 = 1.0 / cos1;
147 d2 = nratio / cos2;
148 d1 = (d1 - d2) / (d1 + d2);
149 refl += d1 * d1;
150
151 refl *= 0.5;
152 trans = 1.0 - refl;
153
154 trans *= nratio*nratio; /* solid angle ratio */
155
156 if (rayorigin(&p, r, REFRACTED, trans) == 0) {
157
158 /* compute refracted ray */
159 d1 = nratio*cos1 - cos2;
160 for (i = 0; i < 3; i++)
161 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
162 /* accidental reflection? */
163 if (hastexture &&
164 DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
165 d1 *= (double)hastexture;
166 for (i = 0; i < 3; i++) /* ignore texture */
167 p.rdir[i] = nratio*r->rdir[i] +
168 d1*r->ron[i];
169 normalize(p.rdir); /* not exact */
170 }
171 #ifdef DISPERSE
172 if (m->otype != MAT_DIELECTRIC
173 || r->rod > 0.0
174 || r->crtype & SHADOW
175 || !directvis
176 || m->oargs.farg[4] == 0.0
177 || !disperse(m, r, p.rdir,
178 trans, ctrans, talb))
179 #endif
180 {
181 copycolor(p.cext, ctrans);
182 copycolor(p.albedo, talb);
183 rayvalue(&p);
184 scalecolor(p.rcol, trans);
185 addcolor(r->rcol, p.rcol);
186 if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
187 r->rt = r->rot + p.rt;
188 }
189 }
190 }
191
192 if (!(r->crtype & SHADOW) &&
193 rayorigin(&p, r, REFLECTED, refl) == 0) {
194
195 /* compute reflected ray */
196 for (i = 0; i < 3; i++)
197 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
198 /* accidental penetration? */
199 if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
200 for (i = 0; i < 3; i++) /* ignore texture */
201 p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i];
202
203 rayvalue(&p); /* reflected ray value */
204
205 scalecolor(p.rcol, refl); /* color contribution */
206 addcolor(r->rcol, p.rcol);
207 }
208 /* rayvalue() computes absorption */
209 return(1);
210 }
211
212
213 #ifdef DISPERSE
214
215 static
216 disperse(m, r, vt, tr, cet, abt) /* check light sources for dispersion */
217 OBJREC *m;
218 RAY *r;
219 FVECT vt;
220 double tr;
221 COLOR cet, abt;
222 {
223 RAY sray, *entray;
224 FVECT v1, v2, n1, n2;
225 FVECT dv, v2Xdv;
226 double v2Xdvv2Xdv;
227 int success = 0;
228 SRCINDEX si;
229 FVECT vtmp1, vtmp2;
230 double dtmp1, dtmp2;
231 int l1, l2;
232 COLOR ctmp;
233 int i;
234
235 /*
236 * This routine computes dispersion to the first order using
237 * the following assumptions:
238 *
239 * 1) The dependency of the index of refraction on wavelength
240 * is approximated by Hartmann's equation with lambda0
241 * equal to zero.
242 * 2) The entry and exit locations are constant with respect
243 * to dispersion.
244 *
245 * The second assumption permits us to model dispersion without
246 * having to sample refracted directions. We assume that the
247 * geometry inside the material is constant, and concern ourselves
248 * only with the relationship between the entering and exiting ray.
249 * We compute the first derivatives of the entering and exiting
250 * refraction with respect to the index of refraction. This
251 * is then used in a first order Taylor series to determine the
252 * index of refraction necessary to send the exiting ray to each
253 * light source.
254 * If an exiting ray hits a light source within the refraction
255 * boundaries, we sum all the frequencies over the disc of the
256 * light source to determine the resulting color. A smaller light
257 * source will therefore exhibit a sharper spectrum.
258 */
259
260 if (!(r->crtype & REFRACTED)) { /* ray started in material */
261 VCOPY(v1, r->rdir);
262 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
263 } else {
264 /* find entry point */
265 for (entray = r; entray->rtype != REFRACTED;
266 entray = entray->parent)
267 ;
268 entray = entray->parent;
269 if (entray->crtype & REFRACTED) /* too difficult */
270 return(0);
271 VCOPY(v1, entray->rdir);
272 VCOPY(n1, entray->ron);
273 }
274 VCOPY(v2, vt); /* exiting ray */
275 VCOPY(n2, r->ron);
276
277 /* first order dispersion approx. */
278 dtmp1 = DOT(n1, v1);
279 dtmp2 = DOT(n2, v2);
280 for (i = 0; i < 3; i++)
281 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
282
283 if (DOT(dv, dv) <= FTINY) /* null effect */
284 return(0);
285 /* compute plane normal */
286 fcross(v2Xdv, v2, dv);
287 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
288
289 /* check sources */
290 initsrcindex(&si);
291 while (srcray(&sray, r, &si)) {
292
293 if (DOT(sray.rdir, v2) < MINCOS)
294 continue; /* bad source */
295 /* adjust source ray */
296
297 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
298 sray.rdir[0] -= dtmp1 * v2Xdv[0];
299 sray.rdir[1] -= dtmp1 * v2Xdv[1];
300 sray.rdir[2] -= dtmp1 * v2Xdv[2];
301
302 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
303
304 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
305 continue;
306 /* trace source ray */
307 copycolor(sray.cext, cet);
308 copycolor(sray.albedo, abt);
309 normalize(sray.rdir);
310 rayvalue(&sray);
311 if (bright(sray.rcol) <= FTINY) /* missed it */
312 continue;
313
314 /*
315 * Compute spectral sum over diameter of source.
316 * First find directions for rays going to opposite
317 * sides of source, then compute wavelengths for each.
318 */
319
320 fcross(vtmp1, v2Xdv, sray.rdir);
321 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
322
323 /* compute first ray */
324 for (i = 0; i < 3; i++)
325 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
326
327 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
328 if (l1 < 0)
329 continue;
330 /* compute second ray */
331 for (i = 0; i < 3; i++)
332 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
333
334 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
335 if (l2 < 0)
336 continue;
337 /* compute color from spectrum */
338 if (l1 < l2)
339 spec_rgb(ctmp, l1, l2);
340 else
341 spec_rgb(ctmp, l2, l1);
342 multcolor(ctmp, sray.rcol);
343 scalecolor(ctmp, tr);
344 addcolor(r->rcol, ctmp);
345 success++;
346 }
347 return(success);
348 }
349
350
351 static int
352 lambda(m, v2, dv, lr) /* compute lambda for material */
353 register OBJREC *m;
354 FVECT v2, dv, lr;
355 {
356 FVECT lrXdv, v2Xlr;
357 double dtmp, denom;
358 int i;
359
360 fcross(lrXdv, lr, dv);
361 for (i = 0; i < 3; i++)
362 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
363 break;
364 if (i >= 3)
365 return(-1);
366
367 fcross(v2Xlr, v2, lr);
368
369 dtmp = m->oargs.farg[4] / MLAMBDA;
370 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
371
372 if (denom < FTINY)
373 return(-1);
374
375 return(m->oargs.farg[4] / denom);
376 }
377
378 #endif /* DISPERSE */