ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.15
Committed: Sat Feb 22 02:07:28 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.14: +59 -8 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * dielectric.c - shading function for transparent materials.
6 */
7
8 /* ====================================================================
9 * The Radiance Software License, Version 1.0
10 *
11 * Copyright (c) 1990 - 2002 The Regents of the University of California,
12 * through Lawrence Berkeley National Laboratory. All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 *
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in
23 * the documentation and/or other materials provided with the
24 * distribution.
25 *
26 * 3. The end-user documentation included with the redistribution,
27 * if any, must include the following acknowledgment:
28 * "This product includes Radiance software
29 * (http://radsite.lbl.gov/)
30 * developed by the Lawrence Berkeley National Laboratory
31 * (http://www.lbl.gov/)."
32 * Alternately, this acknowledgment may appear in the software itself,
33 * if and wherever such third-party acknowledgments normally appear.
34 *
35 * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
36 * and "The Regents of the University of California" must
37 * not be used to endorse or promote products derived from this
38 * software without prior written permission. For written
39 * permission, please contact [email protected].
40 *
41 * 5. Products derived from this software may not be called "Radiance",
42 * nor may "Radiance" appear in their name, without prior written
43 * permission of Lawrence Berkeley National Laboratory.
44 *
45 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
46 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
47 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
48 * DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
49 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
52 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
53 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
54 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
55 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 * ====================================================================
58 *
59 * This software consists of voluntary contributions made by many
60 * individuals on behalf of Lawrence Berkeley National Laboratory. For more
61 * information on Lawrence Berkeley National Laboratory, please see
62 * <http://www.lbl.gov/>.
63 */
64
65 #include "ray.h"
66
67 #include "otypes.h"
68
69 #ifdef DISPERSE
70 #include "source.h"
71 static disperse();
72 static int lambda();
73 #endif
74
75 /*
76 * Explicit calculations for Fresnel's equation are performed,
77 * but only one square root computation is necessary.
78 * The index of refraction is given as a Hartmann equation
79 * with lambda0 equal to zero. If the slope of Hartmann's
80 * equation is non-zero, the material disperses light upon
81 * refraction. This condition is examined on rays traced to
82 * light sources. If a ray is exiting a dielectric material, we
83 * check the sources to see if any would cause bright color to be
84 * directed to the viewer due to dispersion. This gives colorful
85 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
86 *
87 * Arguments for MAT_DIELECTRIC are:
88 * red grn blu rndx Hartmann
89 *
90 * Arguments for MAT_INTERFACE are:
91 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
92 *
93 * The primaries are material transmission per unit length.
94 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
95 * outside.
96 */
97
98
99 #define MLAMBDA 500 /* mean lambda */
100 #define MAXLAMBDA 779 /* maximum lambda */
101 #define MINLAMBDA 380 /* minimum lambda */
102
103 #define MINCOS 0.997 /* minimum dot product for dispersion */
104
105
106 static double
107 mylog(x) /* special log for extinction coefficients */
108 double x;
109 {
110 if (x < 1e-40)
111 return(-100.);
112 if (x >= 1.)
113 return(0.);
114 return(log(x));
115 }
116
117
118 m_dielectric(m, r) /* color a ray which hit a dielectric interface */
119 OBJREC *m;
120 register RAY *r;
121 {
122 double cos1, cos2, nratio;
123 COLOR ctrans;
124 COLOR talb;
125 int hastexture;
126 double refl, trans;
127 FVECT dnorm;
128 double d1, d2;
129 RAY p;
130 register int i;
131
132 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
133 objerror(m, USER, "bad arguments");
134
135 raytexture(r, m->omod); /* get modifiers */
136
137 if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
138 cos1 = raynormal(dnorm, r); /* perturb normal */
139 else {
140 VCOPY(dnorm, r->ron);
141 cos1 = r->rod;
142 }
143 /* index of refraction */
144 if (m->otype == MAT_DIELECTRIC)
145 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
146 else
147 nratio = m->oargs.farg[3] / m->oargs.farg[7];
148
149 if (cos1 < 0.0) { /* inside */
150 hastexture = -hastexture;
151 cos1 = -cos1;
152 dnorm[0] = -dnorm[0];
153 dnorm[1] = -dnorm[1];
154 dnorm[2] = -dnorm[2];
155 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
156 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
157 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
158 setcolor(r->albedo, 0., 0., 0.);
159 r->gecc = 0.;
160 if (m->otype == MAT_INTERFACE) {
161 setcolor(ctrans,
162 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
163 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
164 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
165 setcolor(talb, 0., 0., 0.);
166 } else {
167 copycolor(ctrans, cextinction);
168 copycolor(talb, salbedo);
169 }
170 } else { /* outside */
171 nratio = 1.0 / nratio;
172
173 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
174 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
175 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
176 setcolor(talb, 0., 0., 0.);
177 if (m->otype == MAT_INTERFACE) {
178 setcolor(r->cext,
179 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
180 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
181 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
182 setcolor(r->albedo, 0., 0., 0.);
183 r->gecc = 0.;
184 }
185 }
186
187 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
188
189 if (d2 < FTINY) /* total reflection */
190
191 refl = 1.0;
192
193 else { /* refraction occurs */
194 /* compute Fresnel's equations */
195 cos2 = sqrt(d2);
196 d1 = cos1;
197 d2 = nratio*cos2;
198 d1 = (d1 - d2) / (d1 + d2);
199 refl = d1 * d1;
200
201 d1 = 1.0 / cos1;
202 d2 = nratio / cos2;
203 d1 = (d1 - d2) / (d1 + d2);
204 refl += d1 * d1;
205
206 refl *= 0.5;
207 trans = 1.0 - refl;
208
209 trans *= nratio*nratio; /* solid angle ratio */
210
211 if (rayorigin(&p, r, REFRACTED, trans) == 0) {
212
213 /* compute refracted ray */
214 d1 = nratio*cos1 - cos2;
215 for (i = 0; i < 3; i++)
216 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
217 /* accidental reflection? */
218 if (hastexture &&
219 DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
220 d1 *= (double)hastexture;
221 for (i = 0; i < 3; i++) /* ignore texture */
222 p.rdir[i] = nratio*r->rdir[i] +
223 d1*r->ron[i];
224 normalize(p.rdir); /* not exact */
225 }
226 #ifdef DISPERSE
227 if (m->otype != MAT_DIELECTRIC
228 || r->rod > 0.0
229 || r->crtype & SHADOW
230 || !directvis
231 || m->oargs.farg[4] == 0.0
232 || !disperse(m, r, p.rdir,
233 trans, ctrans, talb))
234 #endif
235 {
236 copycolor(p.cext, ctrans);
237 copycolor(p.albedo, talb);
238 rayvalue(&p);
239 scalecolor(p.rcol, trans);
240 addcolor(r->rcol, p.rcol);
241 if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
242 r->rt = r->rot + p.rt;
243 }
244 }
245 }
246
247 if (!(r->crtype & SHADOW) &&
248 rayorigin(&p, r, REFLECTED, refl) == 0) {
249
250 /* compute reflected ray */
251 for (i = 0; i < 3; i++)
252 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
253 /* accidental penetration? */
254 if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
255 for (i = 0; i < 3; i++) /* ignore texture */
256 p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i];
257
258 rayvalue(&p); /* reflected ray value */
259
260 scalecolor(p.rcol, refl); /* color contribution */
261 addcolor(r->rcol, p.rcol);
262 }
263 /* rayvalue() computes absorption */
264 return(1);
265 }
266
267
268 #ifdef DISPERSE
269
270 static
271 disperse(m, r, vt, tr, cet, abt) /* check light sources for dispersion */
272 OBJREC *m;
273 RAY *r;
274 FVECT vt;
275 double tr;
276 COLOR cet, abt;
277 {
278 RAY sray, *entray;
279 FVECT v1, v2, n1, n2;
280 FVECT dv, v2Xdv;
281 double v2Xdvv2Xdv;
282 int success = 0;
283 SRCINDEX si;
284 FVECT vtmp1, vtmp2;
285 double dtmp1, dtmp2;
286 int l1, l2;
287 COLOR ctmp;
288 int i;
289
290 /*
291 * This routine computes dispersion to the first order using
292 * the following assumptions:
293 *
294 * 1) The dependency of the index of refraction on wavelength
295 * is approximated by Hartmann's equation with lambda0
296 * equal to zero.
297 * 2) The entry and exit locations are constant with respect
298 * to dispersion.
299 *
300 * The second assumption permits us to model dispersion without
301 * having to sample refracted directions. We assume that the
302 * geometry inside the material is constant, and concern ourselves
303 * only with the relationship between the entering and exiting ray.
304 * We compute the first derivatives of the entering and exiting
305 * refraction with respect to the index of refraction. This
306 * is then used in a first order Taylor series to determine the
307 * index of refraction necessary to send the exiting ray to each
308 * light source.
309 * If an exiting ray hits a light source within the refraction
310 * boundaries, we sum all the frequencies over the disc of the
311 * light source to determine the resulting color. A smaller light
312 * source will therefore exhibit a sharper spectrum.
313 */
314
315 if (!(r->crtype & REFRACTED)) { /* ray started in material */
316 VCOPY(v1, r->rdir);
317 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
318 } else {
319 /* find entry point */
320 for (entray = r; entray->rtype != REFRACTED;
321 entray = entray->parent)
322 ;
323 entray = entray->parent;
324 if (entray->crtype & REFRACTED) /* too difficult */
325 return(0);
326 VCOPY(v1, entray->rdir);
327 VCOPY(n1, entray->ron);
328 }
329 VCOPY(v2, vt); /* exiting ray */
330 VCOPY(n2, r->ron);
331
332 /* first order dispersion approx. */
333 dtmp1 = DOT(n1, v1);
334 dtmp2 = DOT(n2, v2);
335 for (i = 0; i < 3; i++)
336 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
337
338 if (DOT(dv, dv) <= FTINY) /* null effect */
339 return(0);
340 /* compute plane normal */
341 fcross(v2Xdv, v2, dv);
342 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
343
344 /* check sources */
345 initsrcindex(&si);
346 while (srcray(&sray, r, &si)) {
347
348 if (DOT(sray.rdir, v2) < MINCOS)
349 continue; /* bad source */
350 /* adjust source ray */
351
352 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
353 sray.rdir[0] -= dtmp1 * v2Xdv[0];
354 sray.rdir[1] -= dtmp1 * v2Xdv[1];
355 sray.rdir[2] -= dtmp1 * v2Xdv[2];
356
357 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
358
359 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
360 continue;
361 /* trace source ray */
362 copycolor(sray.cext, cet);
363 copycolor(sray.albedo, abt);
364 normalize(sray.rdir);
365 rayvalue(&sray);
366 if (bright(sray.rcol) <= FTINY) /* missed it */
367 continue;
368
369 /*
370 * Compute spectral sum over diameter of source.
371 * First find directions for rays going to opposite
372 * sides of source, then compute wavelengths for each.
373 */
374
375 fcross(vtmp1, v2Xdv, sray.rdir);
376 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
377
378 /* compute first ray */
379 for (i = 0; i < 3; i++)
380 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
381
382 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
383 if (l1 < 0)
384 continue;
385 /* compute second ray */
386 for (i = 0; i < 3; i++)
387 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
388
389 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
390 if (l2 < 0)
391 continue;
392 /* compute color from spectrum */
393 if (l1 < l2)
394 spec_rgb(ctmp, l1, l2);
395 else
396 spec_rgb(ctmp, l2, l1);
397 multcolor(ctmp, sray.rcol);
398 scalecolor(ctmp, tr);
399 addcolor(r->rcol, ctmp);
400 success++;
401 }
402 return(success);
403 }
404
405
406 static int
407 lambda(m, v2, dv, lr) /* compute lambda for material */
408 register OBJREC *m;
409 FVECT v2, dv, lr;
410 {
411 FVECT lrXdv, v2Xlr;
412 double dtmp, denom;
413 int i;
414
415 fcross(lrXdv, lr, dv);
416 for (i = 0; i < 3; i++)
417 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
418 break;
419 if (i >= 3)
420 return(-1);
421
422 fcross(v2Xlr, v2, lr);
423
424 dtmp = m->oargs.farg[4] / MLAMBDA;
425 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
426
427 if (denom < FTINY)
428 return(-1);
429
430 return(m->oargs.farg[4] / denom);
431 }
432
433 #endif /* DISPERSE */