ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.12
Committed: Thu Jul 11 15:14:05 1996 UTC (27 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.11: +14 -3 lines
Log Message:
fixed bug in computation of absorption and dispersion routines

File Contents

# Content
1 /* Copyright (c) 1986 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * dielectric.c - shading function for transparent materials.
9 *
10 * 9/6/85
11 */
12
13 #include "ray.h"
14
15 #include "otypes.h"
16
17 #ifdef DISPERSE
18 #include "source.h"
19 static disperse();
20 static int lambda();
21 #endif
22
23 /*
24 * Explicit calculations for Fresnel's equation are performed,
25 * but only one square root computation is necessary.
26 * The index of refraction is given as a Hartmann equation
27 * with lambda0 equal to zero. If the slope of Hartmann's
28 * equation is non-zero, the material disperses light upon
29 * refraction. This condition is examined on rays traced to
30 * light sources. If a ray is exiting a dielectric material, we
31 * check the sources to see if any would cause bright color to be
32 * directed to the viewer due to dispersion. This gives colorful
33 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
34 *
35 * Arguments for MAT_DIELECTRIC are:
36 * red grn blu rndx Hartmann
37 *
38 * Arguments for MAT_INTERFACE are:
39 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
40 *
41 * The primaries are material transmission per unit length.
42 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
43 * outside.
44 */
45
46
47 #define MLAMBDA 500 /* mean lambda */
48 #define MAXLAMBDA 779 /* maximum lambda */
49 #define MINLAMBDA 380 /* minimum lambda */
50
51 #define MINCOS 0.997 /* minimum dot product for dispersion */
52
53 extern COLOR cextinction; /* global coefficient of extinction */
54 extern COLOR salbedo; /* global scattering albedo */
55
56
57 static double
58 mylog(x) /* special log for extinction coefficients */
59 double x;
60 {
61 if (x < 1e-40)
62 return(-100.);
63 if (x >= 1.)
64 return(0.);
65 return(log(x));
66 }
67
68
69 m_dielectric(m, r) /* color a ray which hit a dielectric interface */
70 OBJREC *m;
71 register RAY *r;
72 {
73 double cos1, cos2, nratio;
74 COLOR ctrans;
75 COLOR talb;
76 double mabsorp;
77 double refl, trans;
78 FVECT dnorm;
79 double d1, d2;
80 RAY p;
81 register int i;
82
83 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
84 objerror(m, USER, "bad arguments");
85
86 raytexture(r, m->omod); /* get modifiers */
87
88 cos1 = raynormal(dnorm, r); /* cosine of theta1 */
89 /* index of refraction */
90 if (m->otype == MAT_DIELECTRIC)
91 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
92 else
93 nratio = m->oargs.farg[3] / m->oargs.farg[7];
94
95 if (cos1 < 0.0) { /* inside */
96 cos1 = -cos1;
97 dnorm[0] = -dnorm[0];
98 dnorm[1] = -dnorm[1];
99 dnorm[2] = -dnorm[2];
100 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
101 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
102 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
103 setcolor(r->albedo, 0., 0., 0.);
104 r->gecc = 0.;
105 if (m->otype == MAT_INTERFACE) {
106 setcolor(ctrans,
107 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
108 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
109 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
110 setcolor(talb, 0., 0., 0.);
111 } else {
112 copycolor(ctrans, cextinction);
113 copycolor(talb, salbedo);
114 }
115 } else { /* outside */
116 nratio = 1.0 / nratio;
117
118 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
119 -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
120 -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
121 setcolor(talb, 0., 0., 0.);
122 if (m->otype == MAT_INTERFACE) {
123 setcolor(r->cext,
124 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
125 -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
126 -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
127 setcolor(r->albedo, 0., 0., 0.);
128 r->gecc = 0.;
129 }
130 }
131 /* estimate absorption */
132 mabsorp = colval(r->cext,RED) < colval(r->cext,GRN) ?
133 colval(r->cext,RED) : colval(r->cext,GRN);
134 if (colval(r->cext,BLU) < mabsorp) mabsorp = colval(r->cext,BLU);
135 if (mabsorp > 0.)
136 mabsorp = exp(-mabsorp*r->rot); /* conservative */
137 else
138 mabsorp = 1.0;
139
140 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
141
142 if (d2 < FTINY) /* total reflection */
143
144 refl = 1.0;
145
146 else { /* refraction occurs */
147 /* compute Fresnel's equations */
148 cos2 = sqrt(d2);
149 d1 = cos1;
150 d2 = nratio*cos2;
151 d1 = (d1 - d2) / (d1 + d2);
152 refl = d1 * d1;
153
154 d1 = 1.0 / cos1;
155 d2 = nratio / cos2;
156 d1 = (d1 - d2) / (d1 + d2);
157 refl += d1 * d1;
158
159 refl *= 0.5;
160 trans = 1.0 - refl;
161
162 if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
163
164 /* compute refracted ray */
165 d1 = nratio*cos1 - cos2;
166 for (i = 0; i < 3; i++)
167 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
168
169 #ifdef DISPERSE
170 if (m->otype != MAT_DIELECTRIC
171 || r->rod > 0.0
172 || r->crtype & SHADOW
173 || !directvis
174 || m->oargs.farg[4] == 0.0
175 || !disperse(m, r, p.rdir,
176 trans, ctrans, talb))
177 #endif
178 {
179 copycolor(p.cext, ctrans);
180 copycolor(p.albedo, talb);
181 rayvalue(&p);
182 scalecolor(p.rcol, trans);
183 addcolor(r->rcol, p.rcol);
184 if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
185 r->rt = r->rot + p.rt;
186 }
187 }
188 }
189
190 if (!(r->crtype & SHADOW) &&
191 rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
192
193 /* compute reflected ray */
194 for (i = 0; i < 3; i++)
195 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
196
197 rayvalue(&p); /* reflected ray value */
198
199 scalecolor(p.rcol, refl); /* color contribution */
200 addcolor(r->rcol, p.rcol);
201 }
202 /* rayvalue() computes absorption */
203 return(1);
204 }
205
206
207 #ifdef DISPERSE
208
209 static
210 disperse(m, r, vt, tr, cet, abt) /* check light sources for dispersion */
211 OBJREC *m;
212 RAY *r;
213 FVECT vt;
214 double tr;
215 COLOR cet, abt;
216 {
217 RAY sray, *entray;
218 FVECT v1, v2, n1, n2;
219 FVECT dv, v2Xdv;
220 double v2Xdvv2Xdv;
221 int success = 0;
222 SRCINDEX si;
223 FVECT vtmp1, vtmp2;
224 double dtmp1, dtmp2;
225 int l1, l2;
226 COLOR ctmp;
227 int i;
228
229 /*
230 * This routine computes dispersion to the first order using
231 * the following assumptions:
232 *
233 * 1) The dependency of the index of refraction on wavelength
234 * is approximated by Hartmann's equation with lambda0
235 * equal to zero.
236 * 2) The entry and exit locations are constant with respect
237 * to dispersion.
238 *
239 * The second assumption permits us to model dispersion without
240 * having to sample refracted directions. We assume that the
241 * geometry inside the material is constant, and concern ourselves
242 * only with the relationship between the entering and exiting ray.
243 * We compute the first derivatives of the entering and exiting
244 * refraction with respect to the index of refraction. This
245 * is then used in a first order Taylor series to determine the
246 * index of refraction necessary to send the exiting ray to each
247 * light source.
248 * If an exiting ray hits a light source within the refraction
249 * boundaries, we sum all the frequencies over the disc of the
250 * light source to determine the resulting color. A smaller light
251 * source will therefore exhibit a sharper spectrum.
252 */
253
254 if (!(r->crtype & REFRACTED)) { /* ray started in material */
255 VCOPY(v1, r->rdir);
256 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
257 } else {
258 /* find entry point */
259 for (entray = r; entray->rtype != REFRACTED;
260 entray = entray->parent)
261 ;
262 entray = entray->parent;
263 if (entray->crtype & REFRACTED) /* too difficult */
264 return(0);
265 VCOPY(v1, entray->rdir);
266 VCOPY(n1, entray->ron);
267 }
268 VCOPY(v2, vt); /* exiting ray */
269 VCOPY(n2, r->ron);
270
271 /* first order dispersion approx. */
272 dtmp1 = DOT(n1, v1);
273 dtmp2 = DOT(n2, v2);
274 for (i = 0; i < 3; i++)
275 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
276
277 if (DOT(dv, dv) <= FTINY) /* null effect */
278 return(0);
279 /* compute plane normal */
280 fcross(v2Xdv, v2, dv);
281 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
282
283 /* check sources */
284 initsrcindex(&si);
285 while (srcray(&sray, r, &si)) {
286
287 if (DOT(sray.rdir, v2) < MINCOS)
288 continue; /* bad source */
289 /* adjust source ray */
290
291 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
292 sray.rdir[0] -= dtmp1 * v2Xdv[0];
293 sray.rdir[1] -= dtmp1 * v2Xdv[1];
294 sray.rdir[2] -= dtmp1 * v2Xdv[2];
295
296 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
297
298 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
299 continue;
300 /* trace source ray */
301 copycolor(sray.cext, cet);
302 copycolor(sray.albedo, abt);
303 normalize(sray.rdir);
304 rayvalue(&sray);
305 if (bright(sray.rcol) <= FTINY) /* missed it */
306 continue;
307
308 /*
309 * Compute spectral sum over diameter of source.
310 * First find directions for rays going to opposite
311 * sides of source, then compute wavelengths for each.
312 */
313
314 fcross(vtmp1, v2Xdv, sray.rdir);
315 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
316
317 /* compute first ray */
318 for (i = 0; i < 3; i++)
319 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
320
321 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
322 if (l1 < 0)
323 continue;
324 /* compute second ray */
325 for (i = 0; i < 3; i++)
326 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
327
328 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
329 if (l2 < 0)
330 continue;
331 /* compute color from spectrum */
332 if (l1 < l2)
333 spec_rgb(ctmp, l1, l2);
334 else
335 spec_rgb(ctmp, l2, l1);
336 multcolor(ctmp, sray.rcol);
337 scalecolor(ctmp, tr);
338 addcolor(r->rcol, ctmp);
339 success++;
340 }
341 return(success);
342 }
343
344
345 static int
346 lambda(m, v2, dv, lr) /* compute lambda for material */
347 register OBJREC *m;
348 FVECT v2, dv, lr;
349 {
350 FVECT lrXdv, v2Xlr;
351 double dtmp, denom;
352 int i;
353
354 fcross(lrXdv, lr, dv);
355 for (i = 0; i < 3; i++)
356 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
357 break;
358 if (i >= 3)
359 return(-1);
360
361 fcross(v2Xlr, v2, lr);
362
363 dtmp = m->oargs.farg[4] / MLAMBDA;
364 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
365
366 if (denom < FTINY)
367 return(-1);
368
369 return(m->oargs.farg[4] / denom);
370 }
371
372 #endif /* DISPERSE */