ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 1.7
Committed: Mon Oct 21 12:58:12 1991 UTC (32 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.6: +6 -7 lines
Log Message:
added source sampling (-ds option)

File Contents

# Content
1 /* Copyright (c) 1986 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * dielectric.c - shading function for transparent materials.
9 *
10 * 9/6/85
11 */
12
13 #include "ray.h"
14
15 #include "otypes.h"
16
17 #ifdef DISPERSE
18 #include "source.h"
19 #endif
20
21 /*
22 * Explicit calculations for Fresnel's equation are performed,
23 * but only one square root computation is necessary.
24 * The index of refraction is given as a Hartmann equation
25 * with lambda0 equal to zero. If the slope of Hartmann's
26 * equation is non-zero, the material disperses light upon
27 * refraction. This condition is examined on rays traced to
28 * light sources. If a ray is exiting a dielectric material, we
29 * check the sources to see if any would cause bright color to be
30 * directed to the viewer due to dispersion. This gives colorful
31 * sparkle to crystals, etc. (Only if DISPERSE is defined!)
32 *
33 * Arguments for MAT_DIELECTRIC are:
34 * red grn blu rndx Hartmann
35 *
36 * Arguments for MAT_INTERFACE are:
37 * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
38 *
39 * The primaries are material transmission per unit length.
40 * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
41 * outside.
42 */
43
44
45 #define MLAMBDA 500 /* mean lambda */
46 #define MAXLAMBDA 779 /* maximum lambda */
47 #define MINLAMBDA 380 /* minimum lambda */
48
49 #define MINCOS 0.997 /* minimum dot product for dispersion */
50
51
52 m_dielectric(m, r) /* color a ray which hit something transparent */
53 OBJREC *m;
54 register RAY *r;
55 {
56 double sqrt(), pow();
57 double cos1, cos2, nratio;
58 COLOR mcolor;
59 double mabsorp;
60 double refl, trans;
61 FVECT dnorm;
62 double d1, d2;
63 RAY p;
64 register int i;
65
66 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
67 objerror(m, USER, "bad arguments");
68
69 r->rt = r->rot; /* just use ray length */
70
71 raytexture(r, m->omod); /* get modifiers */
72
73 cos1 = raynormal(dnorm, r); /* cosine of theta1 */
74 /* index of refraction */
75 if (m->otype == MAT_DIELECTRIC)
76 nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
77 else
78 nratio = m->oargs.farg[3] / m->oargs.farg[7];
79
80 if (cos1 < 0.0) { /* inside */
81 cos1 = -cos1;
82 dnorm[0] = -dnorm[0];
83 dnorm[1] = -dnorm[1];
84 dnorm[2] = -dnorm[2];
85 setcolor(mcolor, pow(m->oargs.farg[0], r->rot),
86 pow(m->oargs.farg[1], r->rot),
87 pow(m->oargs.farg[2], r->rot));
88 } else { /* outside */
89 nratio = 1.0 / nratio;
90 if (m->otype == MAT_INTERFACE)
91 setcolor(mcolor, pow(m->oargs.farg[4], r->rot),
92 pow(m->oargs.farg[5], r->rot),
93 pow(m->oargs.farg[6], r->rot));
94 else
95 setcolor(mcolor, 1.0, 1.0, 1.0);
96 }
97 mabsorp = bright(mcolor);
98
99 d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
100
101 if (d2 < FTINY) /* total reflection */
102
103 refl = 1.0;
104
105 else { /* refraction occurs */
106 /* compute Fresnel's equations */
107 cos2 = sqrt(d2);
108 d1 = cos1;
109 d2 = nratio*cos2;
110 d1 = (d1 - d2) / (d1 + d2);
111 refl = d1 * d1;
112
113 d1 = 1.0 / cos1;
114 d2 = nratio / cos2;
115 d1 = (d1 - d2) / (d1 + d2);
116 refl += d1 * d1;
117
118 refl /= 2.0;
119 trans = 1.0 - refl;
120
121 if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
122
123 /* compute refracted ray */
124 d1 = nratio*cos1 - cos2;
125 for (i = 0; i < 3; i++)
126 p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
127
128 #ifdef DISPERSE
129 if (m->otype != MAT_DIELECTRIC
130 || r->rod > 0.0
131 || r->crtype & SHADOW
132 || directinvis
133 || m->oargs.farg[4] == 0.0
134 || !disperse(m, r, p.rdir, trans))
135 #endif
136 {
137 rayvalue(&p);
138 multcolor(mcolor, r->pcol); /* modify */
139 scalecolor(p.rcol, trans);
140 addcolor(r->rcol, p.rcol);
141 }
142 }
143 }
144
145 if (!(r->crtype & SHADOW) &&
146 rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
147
148 /* compute reflected ray */
149 for (i = 0; i < 3; i++)
150 p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
151
152 rayvalue(&p); /* reflected ray value */
153
154 scalecolor(p.rcol, refl); /* color contribution */
155 addcolor(r->rcol, p.rcol);
156 }
157
158 multcolor(r->rcol, mcolor); /* multiply by transmittance */
159 }
160
161
162 #ifdef DISPERSE
163
164 static
165 disperse(m, r, vt, tr) /* check light sources for dispersion */
166 OBJREC *m;
167 RAY *r;
168 FVECT vt;
169 double tr;
170 {
171 double sqrt();
172 RAY sray, *entray;
173 FVECT v1, v2, n1, n2;
174 FVECT dv, v2Xdv;
175 double v2Xdvv2Xdv;
176 int success = 0;
177 SRCINDEX si;
178 FVECT vtmp1, vtmp2;
179 double dtmp1, dtmp2;
180 int l1, l2;
181 COLOR ctmp;
182 int i;
183
184 /*
185 * This routine computes dispersion to the first order using
186 * the following assumptions:
187 *
188 * 1) The dependency of the index of refraction on wavelength
189 * is approximated by Hartmann's equation with lambda0
190 * equal to zero.
191 * 2) The entry and exit locations are constant with respect
192 * to dispersion.
193 *
194 * The second assumption permits us to model dispersion without
195 * having to sample refracted directions. We assume that the
196 * geometry inside the material is constant, and concern ourselves
197 * only with the relationship between the entering and exiting ray.
198 * We compute the first derivatives of the entering and exiting
199 * refraction with respect to the index of refraction. This
200 * is then used in a first order Taylor series to determine the
201 * index of refraction necessary to send the exiting ray to each
202 * light source.
203 * If an exiting ray hits a light source within the refraction
204 * boundaries, we sum all the frequencies over the disc of the
205 * light source to determine the resulting color. A smaller light
206 * source will therefore exhibit a sharper spectrum.
207 */
208
209 if (!(r->crtype & REFRACTED)) { /* ray started in material */
210 VCOPY(v1, r->rdir);
211 n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
212 } else {
213 /* find entry point */
214 for (entray = r; entray->rtype != REFRACTED;
215 entray = entray->parent)
216 ;
217 entray = entray->parent;
218 if (entray->crtype & REFRACTED) /* too difficult */
219 return(0);
220 VCOPY(v1, entray->rdir);
221 VCOPY(n1, entray->ron);
222 }
223 VCOPY(v2, vt); /* exiting ray */
224 VCOPY(n2, r->ron);
225
226 /* first order dispersion approx. */
227 dtmp1 = DOT(n1, v1);
228 dtmp2 = DOT(n2, v2);
229 for (i = 0; i < 3; i++)
230 dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
231
232 if (DOT(dv, dv) <= FTINY) /* null effect */
233 return(0);
234 /* compute plane normal */
235 fcross(v2Xdv, v2, dv);
236 v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
237
238 /* check sources */
239 initsrcindex(&si);
240 while (srcray(&sray, r, &si)) {
241
242 if (DOT(sray.rdir, v2) < MINCOS)
243 continue; /* bad source */
244 /* adjust source ray */
245
246 dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
247 sray.rdir[0] -= dtmp1 * v2Xdv[0];
248 sray.rdir[1] -= dtmp1 * v2Xdv[1];
249 sray.rdir[2] -= dtmp1 * v2Xdv[2];
250
251 l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
252
253 if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
254 continue;
255 /* trace source ray */
256 normalize(sray.rdir);
257 rayvalue(&sray);
258 if (bright(sray.rcol) <= FTINY) /* missed it */
259 continue;
260
261 /*
262 * Compute spectral sum over diameter of source.
263 * First find directions for rays going to opposite
264 * sides of source, then compute wavelengths for each.
265 */
266
267 fcross(vtmp1, v2Xdv, sray.rdir);
268 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
269
270 /* compute first ray */
271 for (i = 0; i < 3; i++)
272 vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
273
274 l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
275 if (l1 < 0)
276 continue;
277 /* compute second ray */
278 for (i = 0; i < 3; i++)
279 vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
280
281 l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
282 if (l2 < 0)
283 continue;
284 /* compute color from spectrum */
285 if (l1 < l2)
286 spec_rgb(ctmp, l1, l2);
287 else
288 spec_rgb(ctmp, l2, l1);
289 multcolor(ctmp, sray.rcol);
290 scalecolor(ctmp, tr);
291 addcolor(r->rcol, ctmp);
292 success++;
293 }
294 return(success);
295 }
296
297
298 static int
299 lambda(m, v2, dv, lr) /* compute lambda for material */
300 register OBJREC *m;
301 FVECT v2, dv, lr;
302 {
303 FVECT lrXdv, v2Xlr;
304 double dtmp, denom;
305 int i;
306
307 fcross(lrXdv, lr, dv);
308 for (i = 0; i < 3; i++)
309 if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
310 break;
311 if (i >= 3)
312 return(-1);
313
314 fcross(v2Xlr, v2, lr);
315
316 dtmp = m->oargs.farg[4] / MLAMBDA;
317 denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
318
319 if (denom < FTINY)
320 return(-1);
321
322 return(m->oargs.farg[4] / denom);
323 }
324
325 #endif /* DISPERSE */