/* Copyright (c) 1986 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * dielectric.c - shading function for transparent materials. * * 9/6/85 */ #include "ray.h" #include "otypes.h" #ifdef DISPERSE #include "source.h" #endif /* * Explicit calculations for Fresnel's equation are performed, * but only one square root computation is necessary. * The index of refraction is given as a Hartmann equation * with lambda0 equal to zero. If the slope of Hartmann's * equation is non-zero, the material disperses light upon * refraction. This condition is examined on rays traced to * light sources. If a ray is exiting a dielectric material, we * check the sources to see if any would cause bright color to be * directed to the viewer due to dispersion. This gives colorful * sparkle to crystals, etc. (Only if DISPERSE is defined!) * * Arguments for MAT_DIELECTRIC are: * red grn blu rndx Hartmann * * Arguments for MAT_INTERFACE are: * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2 * * The primaries are material transmission per unit length. * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for * outside. */ #define MLAMBDA 500 /* mean lambda */ #define MAXLAMBDA 779 /* maximum lambda */ #define MINLAMBDA 380 /* minimum lambda */ #define MINCOS 0.997 /* minimum dot product for dispersion */ m_dielectric(m, r) /* color a ray which hit something transparent */ OBJREC *m; register RAY *r; { double sqrt(), pow(); double cos1, cos2, nratio; COLOR mcolor; double mabsorp; double refl, trans, transbright; FVECT dnorm; double d1, d2; RAY p; register int i; if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8)) objerror(m, USER, "bad arguments"); raytexture(r, m->omod); /* get modifiers */ cos1 = raynormal(dnorm, r); /* cosine of theta1 */ /* index of refraction */ if (m->otype == MAT_DIELECTRIC) nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA; else nratio = m->oargs.farg[3] / m->oargs.farg[7]; if (cos1 < 0.0) { /* inside */ cos1 = -cos1; dnorm[0] = -dnorm[0]; dnorm[1] = -dnorm[1]; dnorm[2] = -dnorm[2]; setcolor(mcolor, pow(m->oargs.farg[0], r->rot), pow(m->oargs.farg[1], r->rot), pow(m->oargs.farg[2], r->rot)); } else { /* outside */ nratio = 1.0 / nratio; if (m->otype == MAT_INTERFACE) setcolor(mcolor, pow(m->oargs.farg[4], r->rot), pow(m->oargs.farg[5], r->rot), pow(m->oargs.farg[6], r->rot)); else setcolor(mcolor, 1.0, 1.0, 1.0); } mabsorp = bright(mcolor); d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */ if (d2 < FTINY) /* total reflection */ refl = 1.0; else { /* refraction occurs */ /* compute Fresnel's equations */ cos2 = sqrt(d2); d1 = cos1; d2 = nratio*cos2; d1 = (d1 - d2) / (d1 + d2); refl = d1 * d1; d1 = 1.0 / cos1; d2 = nratio / cos2; d1 = (d1 - d2) / (d1 + d2); refl += d1 * d1; refl /= 2.0; trans = 1.0 - refl; transbright = -FTINY; if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) { /* compute refracted ray */ d1 = nratio*cos1 - cos2; for (i = 0; i < 3; i++) p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i]; #ifdef DISPERSE if (m->otype != MAT_DIELECTRIC || r->rod > 0.0 || r->crtype & SHADOW || m->oargs.farg[4] == 0.0 || !disperse(m, r, p.rdir, trans)) #endif { rayvalue(&p); multcolor(mcolor, r->pcol); /* modify */ scalecolor(p.rcol, trans); addcolor(r->rcol, p.rcol); transbright = bright(p.rcol); r->rt = r->rot + p.rt; } } } if (!(r->crtype & SHADOW) && rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) { /* compute reflected ray */ for (i = 0; i < 3; i++) p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i]; rayvalue(&p); /* reflected ray value */ scalecolor(p.rcol, refl); /* color contribution */ addcolor(r->rcol, p.rcol); if (bright(p.rcol) > transbright) r->rt = r->rot + p.rt; } multcolor(r->rcol, mcolor); /* multiply by transmittance */ } #ifdef DISPERSE static disperse(m, r, vt, tr) /* check light sources for dispersion */ OBJREC *m; RAY *r; FVECT vt; double tr; { double sqrt(); RAY sray, *entray; FVECT v1, v2, n1, n2; FVECT dv, v2Xdv; double v2Xdvv2Xdv; int sn, success = 0; double omega; FVECT vtmp1, vtmp2; double dtmp1, dtmp2; int l1, l2; COLOR ctmp; int i; /* * This routine computes dispersion to the first order using * the following assumptions: * * 1) The dependency of the index of refraction on wavelength * is approximated by Hartmann's equation with lambda0 * equal to zero. * 2) The entry and exit locations are constant with respect * to dispersion. * * The second assumption permits us to model dispersion without * having to sample refracted directions. We assume that the * geometry inside the material is constant, and concern ourselves * only with the relationship between the entering and exiting ray. * We compute the first derivatives of the entering and exiting * refraction with respect to the index of refraction. This * is then used in a first order Taylor series to determine the * index of refraction necessary to send the exiting ray to each * light source. * If an exiting ray hits a light source within the refraction * boundaries, we sum all the frequencies over the disc of the * light source to determine the resulting color. A smaller light * source will therefore exhibit a sharper spectrum. */ if (!(r->crtype & REFRACTED)) { /* ray started in material */ VCOPY(v1, r->rdir); n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2]; } else { /* find entry point */ for (entray = r; entray->rtype != REFRACTED; entray = entray->parent) ; entray = entray->parent; if (entray->crtype & REFRACTED) /* too difficult */ return(0); VCOPY(v1, entray->rdir); VCOPY(n1, entray->ron); } VCOPY(v2, vt); /* exiting ray */ VCOPY(n2, r->ron); /* first order dispersion approx. */ dtmp1 = DOT(n1, v1); dtmp2 = DOT(n2, v2); for (i = 0; i < 3; i++) dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2; if (DOT(dv, dv) <= FTINY) /* null effect */ return(0); /* compute plane normal */ fcross(v2Xdv, v2, dv); v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv); /* check sources */ for (sn = 0; sn < nsources; sn++) { if ((omega = srcray(&sray, r, sn)) == 0.0 || DOT(sray.rdir, v2) < MINCOS) continue; /* bad source */ /* adjust source ray */ dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv; sray.rdir[0] -= dtmp1 * v2Xdv[0]; sray.rdir[1] -= dtmp1 * v2Xdv[1]; sray.rdir[2] -= dtmp1 * v2Xdv[2]; l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */ if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */ continue; /* trace source ray */ normalize(sray.rdir); rayvalue(&sray); if (bright(sray.rcol) <= FTINY) /* missed it */ continue; /* * Compute spectral sum over diameter of source. * First find directions for rays going to opposite * sides of source, then compute wavelengths for each. */ fcross(vtmp1, v2Xdv, sray.rdir); dtmp1 = sqrt(omega / v2Xdvv2Xdv / PI); /* compute first ray */ for (i = 0; i < 3; i++) vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i]; l1 = lambda(m, v2, dv, vtmp2); /* first lambda */ if (l1 < 0) continue; /* compute second ray */ for (i = 0; i < 3; i++) vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i]; l2 = lambda(m, v2, dv, vtmp2); /* second lambda */ if (l2 < 0) continue; /* compute color from spectrum */ if (l1 < l2) spec_rgb(ctmp, l1, l2); else spec_rgb(ctmp, l2, l1); multcolor(ctmp, sray.rcol); scalecolor(ctmp, tr); addcolor(r->rcol, ctmp); success++; } return(success); } static int lambda(m, v2, dv, lr) /* compute lambda for material */ register OBJREC *m; FVECT v2, dv, lr; { FVECT lrXdv, v2Xlr; double dtmp, denom; int i; fcross(lrXdv, lr, dv); for (i = 0; i < 3; i++) if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY) break; if (i >= 3) return(-1); fcross(v2Xlr, v2, lr); dtmp = m->oargs.farg[4] / MLAMBDA; denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp); if (denom < FTINY) return(-1); return(m->oargs.farg[4] / denom); } #endif /* DISPERSE */