8 |
|
#include "copyright.h" |
9 |
|
|
10 |
|
#include "ray.h" |
11 |
– |
|
11 |
|
#include "otypes.h" |
12 |
+ |
#include "rtotypes.h" |
13 |
+ |
#include "pmapmat.h" |
14 |
|
|
15 |
|
#ifdef DISPERSE |
16 |
|
#include "source.h" |
17 |
< |
static disperse(); |
18 |
< |
static int lambda(); |
17 |
> |
static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt); |
18 |
> |
static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr); |
19 |
|
#endif |
20 |
|
|
21 |
+ |
static double mylog(double x); |
22 |
+ |
|
23 |
+ |
|
24 |
|
/* |
25 |
|
* Explicit calculations for Fresnel's equation are performed, |
26 |
|
* but only one square root computation is necessary. |
51 |
|
|
52 |
|
#define MINCOS 0.997 /* minimum dot product for dispersion */ |
53 |
|
|
50 |
– |
|
54 |
|
static double |
55 |
< |
mylog(x) /* special log for extinction coefficients */ |
56 |
< |
double x; |
55 |
> |
mylog( /* special log for extinction coefficients */ |
56 |
> |
double x |
57 |
> |
) |
58 |
|
{ |
59 |
|
if (x < 1e-40) |
60 |
|
return(-100.); |
64 |
|
} |
65 |
|
|
66 |
|
|
67 |
< |
m_dielectric(m, r) /* color a ray which hit a dielectric interface */ |
68 |
< |
OBJREC *m; |
69 |
< |
register RAY *r; |
67 |
> |
int |
68 |
> |
m_dielectric( /* color a ray which hit a dielectric interface */ |
69 |
> |
OBJREC *m, |
70 |
> |
RAY *r |
71 |
> |
) |
72 |
|
{ |
73 |
|
double cos1, cos2, nratio; |
74 |
|
COLOR ctrans; |
75 |
|
COLOR talb; |
76 |
|
int hastexture; |
77 |
+ |
int flatsurface; |
78 |
|
double refl, trans; |
79 |
|
FVECT dnorm; |
80 |
|
double d1, d2; |
81 |
|
RAY p; |
82 |
< |
register int i; |
82 |
> |
int i; |
83 |
|
|
84 |
+ |
/* PMAP: skip refracted shadow or ambient ray if accounted for in |
85 |
+ |
photon map */ |
86 |
+ |
if (shadowRayInPmap(r) || ambRayInPmap(r)) |
87 |
+ |
return(1); |
88 |
+ |
|
89 |
|
if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8)) |
90 |
|
objerror(m, USER, "bad arguments"); |
91 |
|
|
92 |
|
raytexture(r, m->omod); /* get modifiers */ |
93 |
|
|
94 |
< |
if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) |
94 |
> |
if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) ) |
95 |
|
cos1 = raynormal(dnorm, r); /* perturb normal */ |
96 |
|
else { |
97 |
|
VCOPY(dnorm, r->ron); |
98 |
|
cos1 = r->rod; |
99 |
|
} |
100 |
+ |
flatsurface = r->ro != NULL && isflat(r->ro->otype) && |
101 |
+ |
!hastexture | (r->crtype & AMBIENT); |
102 |
+ |
|
103 |
|
/* index of refraction */ |
104 |
|
if (m->otype == MAT_DIELECTRIC) |
105 |
|
nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA; |
168 |
|
|
169 |
|
trans *= nratio*nratio; /* solid angle ratio */ |
170 |
|
|
171 |
< |
if (rayorigin(&p, r, REFRACTED, trans) == 0) { |
171 |
> |
setcolor(p.rcoef, trans, trans, trans); |
172 |
|
|
173 |
+ |
if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) { |
174 |
+ |
|
175 |
|
/* compute refracted ray */ |
176 |
|
d1 = nratio*cos1 - cos2; |
177 |
|
for (i = 0; i < 3; i++) |
184 |
|
p.rdir[i] = nratio*r->rdir[i] + |
185 |
|
d1*r->ron[i]; |
186 |
|
normalize(p.rdir); /* not exact */ |
187 |
< |
} |
187 |
> |
} else |
188 |
> |
checknorm(p.rdir); |
189 |
|
#ifdef DISPERSE |
190 |
|
if (m->otype != MAT_DIELECTRIC |
191 |
|
|| r->rod > 0.0 |
199 |
|
copycolor(p.cext, ctrans); |
200 |
|
copycolor(p.albedo, talb); |
201 |
|
rayvalue(&p); |
202 |
< |
scalecolor(p.rcol, trans); |
202 |
> |
multcolor(p.rcol, p.rcoef); |
203 |
|
addcolor(r->rcol, p.rcol); |
204 |
< |
if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY) |
205 |
< |
r->rt = r->rot + p.rt; |
204 |
> |
/* virtual distance */ |
205 |
> |
if (flatsurface || |
206 |
> |
(1.-FTINY <= nratio) & |
207 |
> |
(nratio <= 1.+FTINY)) |
208 |
> |
r->rxt = r->rot + raydistance(&p); |
209 |
|
} |
210 |
|
} |
211 |
|
} |
212 |
< |
|
212 |
> |
setcolor(p.rcoef, refl, refl, refl); |
213 |
> |
|
214 |
|
if (!(r->crtype & SHADOW) && |
215 |
< |
rayorigin(&p, r, REFLECTED, refl) == 0) { |
215 |
> |
rayorigin(&p, REFLECTED, r, p.rcoef) == 0) { |
216 |
|
|
217 |
|
/* compute reflected ray */ |
218 |
< |
for (i = 0; i < 3; i++) |
197 |
< |
p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i]; |
218 |
> |
VSUM(p.rdir, r->rdir, dnorm, 2.*cos1); |
219 |
|
/* accidental penetration? */ |
220 |
|
if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY) |
221 |
< |
for (i = 0; i < 3; i++) /* ignore texture */ |
222 |
< |
p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i]; |
202 |
< |
|
221 |
> |
VSUM(p.rdir, r->rdir, r->ron, 2.*r->rod); |
222 |
> |
checknorm(p.rdir); |
223 |
|
rayvalue(&p); /* reflected ray value */ |
224 |
|
|
225 |
< |
scalecolor(p.rcol, refl); /* color contribution */ |
225 |
> |
multcolor(p.rcol, p.rcoef); /* color contribution */ |
226 |
> |
copycolor(r->mcol, p.rcol); |
227 |
|
addcolor(r->rcol, p.rcol); |
228 |
+ |
/* virtual distance */ |
229 |
+ |
if (flatsurface) |
230 |
+ |
r->rmt = r->rot + raydistance(&p); |
231 |
|
} |
232 |
|
/* rayvalue() computes absorption */ |
233 |
|
return(1); |
236 |
|
|
237 |
|
#ifdef DISPERSE |
238 |
|
|
239 |
< |
static |
240 |
< |
disperse(m, r, vt, tr, cet, abt) /* check light sources for dispersion */ |
241 |
< |
OBJREC *m; |
242 |
< |
RAY *r; |
243 |
< |
FVECT vt; |
244 |
< |
double tr; |
245 |
< |
COLOR cet, abt; |
239 |
> |
static int |
240 |
> |
disperse( /* check light sources for dispersion */ |
241 |
> |
OBJREC *m, |
242 |
> |
RAY *r, |
243 |
> |
FVECT vt, |
244 |
> |
double tr, |
245 |
> |
COLOR cet, |
246 |
> |
COLOR abt |
247 |
> |
) |
248 |
|
{ |
249 |
< |
RAY sray, *entray; |
249 |
> |
RAY sray; |
250 |
> |
const RAY *entray; |
251 |
|
FVECT v1, v2, n1, n2; |
252 |
|
FVECT dv, v2Xdv; |
253 |
|
double v2Xdvv2Xdv; |
302 |
|
VCOPY(n2, r->ron); |
303 |
|
|
304 |
|
/* first order dispersion approx. */ |
305 |
< |
dtmp1 = DOT(n1, v1); |
306 |
< |
dtmp2 = DOT(n2, v2); |
305 |
> |
dtmp1 = 1./DOT(n1, v1); |
306 |
> |
dtmp2 = 1./DOT(n2, v2); |
307 |
|
for (i = 0; i < 3; i++) |
308 |
< |
dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2; |
308 |
> |
dv[i] = v1[i] + v2[i] - n1[i]*dtmp1 - n2[i]*dtmp2; |
309 |
|
|
310 |
|
if (DOT(dv, dv) <= FTINY) /* null effect */ |
311 |
|
return(0); |
348 |
|
dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI); |
349 |
|
|
350 |
|
/* compute first ray */ |
351 |
< |
for (i = 0; i < 3; i++) |
325 |
< |
vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i]; |
351 |
> |
VSUM(vtmp2, sray.rdir, vtmp1, dtmp1); |
352 |
|
|
353 |
|
l1 = lambda(m, v2, dv, vtmp2); /* first lambda */ |
354 |
|
if (l1 < 0) |
355 |
|
continue; |
356 |
|
/* compute second ray */ |
357 |
< |
for (i = 0; i < 3; i++) |
332 |
< |
vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i]; |
357 |
> |
VSUM(vtmp2, sray.rdir, vtmp1, -dtmp1); |
358 |
|
|
359 |
|
l2 = lambda(m, v2, dv, vtmp2); /* second lambda */ |
360 |
|
if (l2 < 0) |
374 |
|
|
375 |
|
|
376 |
|
static int |
377 |
< |
lambda(m, v2, dv, lr) /* compute lambda for material */ |
378 |
< |
register OBJREC *m; |
379 |
< |
FVECT v2, dv, lr; |
377 |
> |
lambda( /* compute lambda for material */ |
378 |
> |
OBJREC *m, |
379 |
> |
FVECT v2, |
380 |
> |
FVECT dv, |
381 |
> |
FVECT lr |
382 |
> |
) |
383 |
|
{ |
384 |
|
FVECT lrXdv, v2Xlr; |
385 |
|
double dtmp, denom; |
387 |
|
|
388 |
|
fcross(lrXdv, lr, dv); |
389 |
|
for (i = 0; i < 3; i++) |
390 |
< |
if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY) |
390 |
> |
if ((lrXdv[i] > FTINY) | (lrXdv[i] < -FTINY)) |
391 |
|
break; |
392 |
|
if (i >= 3) |
393 |
|
return(-1); |