| 8 |
|
#include "copyright.h" |
| 9 |
|
|
| 10 |
|
#include "ray.h" |
| 11 |
– |
|
| 11 |
|
#include "otypes.h" |
| 12 |
+ |
#include "rtotypes.h" |
| 13 |
+ |
#include "pmapmat.h" |
| 14 |
|
|
| 15 |
|
#ifdef DISPERSE |
| 16 |
|
#include "source.h" |
| 17 |
< |
static disperse(); |
| 18 |
< |
static int lambda(); |
| 17 |
> |
static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt); |
| 18 |
> |
static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr); |
| 19 |
|
#endif |
| 20 |
|
|
| 21 |
+ |
static double mylog(double x); |
| 22 |
+ |
|
| 23 |
+ |
|
| 24 |
|
/* |
| 25 |
|
* Explicit calculations for Fresnel's equation are performed, |
| 26 |
|
* but only one square root computation is necessary. |
| 51 |
|
|
| 52 |
|
#define MINCOS 0.997 /* minimum dot product for dispersion */ |
| 53 |
|
|
| 50 |
– |
|
| 54 |
|
static double |
| 55 |
< |
mylog(x) /* special log for extinction coefficients */ |
| 56 |
< |
double x; |
| 55 |
> |
mylog( /* special log for extinction coefficients */ |
| 56 |
> |
double x |
| 57 |
> |
) |
| 58 |
|
{ |
| 59 |
|
if (x < 1e-40) |
| 60 |
|
return(-100.); |
| 64 |
|
} |
| 65 |
|
|
| 66 |
|
|
| 67 |
< |
m_dielectric(m, r) /* color a ray which hit a dielectric interface */ |
| 68 |
< |
OBJREC *m; |
| 69 |
< |
register RAY *r; |
| 67 |
> |
int |
| 68 |
> |
m_dielectric( /* color a ray which hit a dielectric interface */ |
| 69 |
> |
OBJREC *m, |
| 70 |
> |
RAY *r |
| 71 |
> |
) |
| 72 |
|
{ |
| 73 |
|
double cos1, cos2, nratio; |
| 74 |
|
COLOR ctrans; |
| 75 |
|
COLOR talb; |
| 76 |
|
int hastexture; |
| 77 |
+ |
int flatsurface; |
| 78 |
|
double refl, trans; |
| 79 |
|
FVECT dnorm; |
| 80 |
|
double d1, d2; |
| 81 |
|
RAY p; |
| 82 |
< |
register int i; |
| 82 |
> |
int i; |
| 83 |
|
|
| 84 |
+ |
/* PMAP: skip refracted shadow or ambient ray if accounted for in |
| 85 |
+ |
photon map */ |
| 86 |
+ |
if (shadowRayInPmap(r) || ambRayInPmap(r)) |
| 87 |
+ |
return(1); |
| 88 |
+ |
|
| 89 |
|
if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8)) |
| 90 |
|
objerror(m, USER, "bad arguments"); |
| 91 |
|
|
| 92 |
|
raytexture(r, m->omod); /* get modifiers */ |
| 93 |
|
|
| 94 |
< |
if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) |
| 94 |
> |
if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) ) |
| 95 |
|
cos1 = raynormal(dnorm, r); /* perturb normal */ |
| 96 |
|
else { |
| 97 |
|
VCOPY(dnorm, r->ron); |
| 98 |
|
cos1 = r->rod; |
| 99 |
|
} |
| 100 |
+ |
flatsurface = r->ro != NULL && isflat(r->ro->otype) && |
| 101 |
+ |
!hastexture | (r->crtype & AMBIENT); |
| 102 |
+ |
|
| 103 |
|
/* index of refraction */ |
| 104 |
|
if (m->otype == MAT_DIELECTRIC) |
| 105 |
|
nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA; |
| 168 |
|
|
| 169 |
|
trans *= nratio*nratio; /* solid angle ratio */ |
| 170 |
|
|
| 171 |
< |
if (rayorigin(&p, r, REFRACTED, trans) == 0) { |
| 171 |
> |
setcolor(p.rcoef, trans, trans, trans); |
| 172 |
|
|
| 173 |
+ |
if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) { |
| 174 |
+ |
|
| 175 |
|
/* compute refracted ray */ |
| 176 |
|
d1 = nratio*cos1 - cos2; |
| 177 |
|
for (i = 0; i < 3; i++) |
| 184 |
|
p.rdir[i] = nratio*r->rdir[i] + |
| 185 |
|
d1*r->ron[i]; |
| 186 |
|
normalize(p.rdir); /* not exact */ |
| 187 |
< |
} |
| 187 |
> |
} else |
| 188 |
> |
checknorm(p.rdir); |
| 189 |
|
#ifdef DISPERSE |
| 190 |
|
if (m->otype != MAT_DIELECTRIC |
| 191 |
|
|| r->rod > 0.0 |
| 199 |
|
copycolor(p.cext, ctrans); |
| 200 |
|
copycolor(p.albedo, talb); |
| 201 |
|
rayvalue(&p); |
| 202 |
< |
scalecolor(p.rcol, trans); |
| 202 |
> |
multcolor(p.rcol, p.rcoef); |
| 203 |
|
addcolor(r->rcol, p.rcol); |
| 204 |
< |
if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY) |
| 205 |
< |
r->rt = r->rot + p.rt; |
| 204 |
> |
/* virtual distance */ |
| 205 |
> |
if (flatsurface || |
| 206 |
> |
(1.-FTINY <= nratio) & |
| 207 |
> |
(nratio <= 1.+FTINY)) |
| 208 |
> |
r->rxt = r->rot + raydistance(&p); |
| 209 |
|
} |
| 210 |
|
} |
| 211 |
|
} |
| 212 |
< |
|
| 212 |
> |
setcolor(p.rcoef, refl, refl, refl); |
| 213 |
> |
|
| 214 |
|
if (!(r->crtype & SHADOW) && |
| 215 |
< |
rayorigin(&p, r, REFLECTED, refl) == 0) { |
| 215 |
> |
rayorigin(&p, REFLECTED, r, p.rcoef) == 0) { |
| 216 |
|
|
| 217 |
|
/* compute reflected ray */ |
| 218 |
< |
for (i = 0; i < 3; i++) |
| 197 |
< |
p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i]; |
| 218 |
> |
VSUM(p.rdir, r->rdir, dnorm, 2.*cos1); |
| 219 |
|
/* accidental penetration? */ |
| 220 |
|
if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY) |
| 221 |
< |
for (i = 0; i < 3; i++) /* ignore texture */ |
| 222 |
< |
p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i]; |
| 202 |
< |
|
| 221 |
> |
VSUM(p.rdir, r->rdir, r->ron, 2.*r->rod); |
| 222 |
> |
checknorm(p.rdir); |
| 223 |
|
rayvalue(&p); /* reflected ray value */ |
| 224 |
|
|
| 225 |
< |
scalecolor(p.rcol, refl); /* color contribution */ |
| 225 |
> |
multcolor(p.rcol, p.rcoef); /* color contribution */ |
| 226 |
> |
copycolor(r->mcol, p.rcol); |
| 227 |
|
addcolor(r->rcol, p.rcol); |
| 228 |
+ |
/* virtual distance */ |
| 229 |
+ |
if (flatsurface) |
| 230 |
+ |
r->rmt = r->rot + raydistance(&p); |
| 231 |
|
} |
| 232 |
|
/* rayvalue() computes absorption */ |
| 233 |
|
return(1); |
| 236 |
|
|
| 237 |
|
#ifdef DISPERSE |
| 238 |
|
|
| 239 |
< |
static |
| 240 |
< |
disperse(m, r, vt, tr, cet, abt) /* check light sources for dispersion */ |
| 241 |
< |
OBJREC *m; |
| 242 |
< |
RAY *r; |
| 243 |
< |
FVECT vt; |
| 244 |
< |
double tr; |
| 245 |
< |
COLOR cet, abt; |
| 239 |
> |
static int |
| 240 |
> |
disperse( /* check light sources for dispersion */ |
| 241 |
> |
OBJREC *m, |
| 242 |
> |
RAY *r, |
| 243 |
> |
FVECT vt, |
| 244 |
> |
double tr, |
| 245 |
> |
COLOR cet, |
| 246 |
> |
COLOR abt |
| 247 |
> |
) |
| 248 |
|
{ |
| 249 |
< |
RAY sray, *entray; |
| 249 |
> |
RAY sray; |
| 250 |
> |
const RAY *entray; |
| 251 |
|
FVECT v1, v2, n1, n2; |
| 252 |
|
FVECT dv, v2Xdv; |
| 253 |
|
double v2Xdvv2Xdv; |
| 302 |
|
VCOPY(n2, r->ron); |
| 303 |
|
|
| 304 |
|
/* first order dispersion approx. */ |
| 305 |
< |
dtmp1 = DOT(n1, v1); |
| 306 |
< |
dtmp2 = DOT(n2, v2); |
| 305 |
> |
dtmp1 = 1./DOT(n1, v1); |
| 306 |
> |
dtmp2 = 1./DOT(n2, v2); |
| 307 |
|
for (i = 0; i < 3; i++) |
| 308 |
< |
dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2; |
| 308 |
> |
dv[i] = v1[i] + v2[i] - n1[i]*dtmp1 - n2[i]*dtmp2; |
| 309 |
|
|
| 310 |
|
if (DOT(dv, dv) <= FTINY) /* null effect */ |
| 311 |
|
return(0); |
| 348 |
|
dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI); |
| 349 |
|
|
| 350 |
|
/* compute first ray */ |
| 351 |
< |
for (i = 0; i < 3; i++) |
| 325 |
< |
vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i]; |
| 351 |
> |
VSUM(vtmp2, sray.rdir, vtmp1, dtmp1); |
| 352 |
|
|
| 353 |
|
l1 = lambda(m, v2, dv, vtmp2); /* first lambda */ |
| 354 |
|
if (l1 < 0) |
| 355 |
|
continue; |
| 356 |
|
/* compute second ray */ |
| 357 |
< |
for (i = 0; i < 3; i++) |
| 332 |
< |
vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i]; |
| 357 |
> |
VSUM(vtmp2, sray.rdir, vtmp1, -dtmp1); |
| 358 |
|
|
| 359 |
|
l2 = lambda(m, v2, dv, vtmp2); /* second lambda */ |
| 360 |
|
if (l2 < 0) |
| 374 |
|
|
| 375 |
|
|
| 376 |
|
static int |
| 377 |
< |
lambda(m, v2, dv, lr) /* compute lambda for material */ |
| 378 |
< |
register OBJREC *m; |
| 379 |
< |
FVECT v2, dv, lr; |
| 377 |
> |
lambda( /* compute lambda for material */ |
| 378 |
> |
OBJREC *m, |
| 379 |
> |
FVECT v2, |
| 380 |
> |
FVECT dv, |
| 381 |
> |
FVECT lr |
| 382 |
> |
) |
| 383 |
|
{ |
| 384 |
|
FVECT lrXdv, v2Xlr; |
| 385 |
|
double dtmp, denom; |
| 387 |
|
|
| 388 |
|
fcross(lrXdv, lr, dv); |
| 389 |
|
for (i = 0; i < 3; i++) |
| 390 |
< |
if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY) |
| 390 |
> |
if ((lrXdv[i] > FTINY) | (lrXdv[i] < -FTINY)) |
| 391 |
|
break; |
| 392 |
|
if (i >= 3) |
| 393 |
|
return(-1); |