ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
(Generate patch)

Comparing ray/src/rt/dielectric.c (file contents):
Revision 2.16 by greg, Tue Feb 25 02:47:22 2003 UTC vs.
Revision 2.30 by greg, Fri Apr 19 19:01:32 2019 UTC

# Line 8 | Line 8 | static const char      RCSid[] = "$Id$";
8   #include "copyright.h"
9  
10   #include  "ray.h"
11
11   #include  "otypes.h"
12 + #include  "rtotypes.h"
13 + #include  "pmapmat.h"
14  
15   #ifdef  DISPERSE
16   #include  "source.h"
17 < static  disperse();
18 < static int  lambda();
17 > static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt);
18 > static int lambda(OBJREC  *m, FVECT  v2, FVECT  dv, FVECT  lr);
19   #endif
20  
21 + static double mylog(double  x);
22 +
23 +
24   /*
25   *     Explicit calculations for Fresnel's equation are performed,
26   *  but only one square root computation is necessary.
# Line 47 | Line 51 | static int  lambda();
51  
52   #define  MINCOS         0.997           /* minimum dot product for dispersion */
53  
50
54   static double
55 < mylog(x)                /* special log for extinction coefficients */
56 < double  x;
55 > mylog(          /* special log for extinction coefficients */
56 >        double  x
57 > )
58   {
59          if (x < 1e-40)
60                  return(-100.);
# Line 60 | Line 64 | double  x;
64   }
65  
66  
67 < m_dielectric(m, r)      /* color a ray which hit a dielectric interface */
68 < OBJREC  *m;
69 < register RAY  *r;
67 > int
68 > m_dielectric(   /* color a ray which hit a dielectric interface */
69 >        OBJREC  *m,
70 >        RAY  *r
71 > )
72   {
73          double  cos1, cos2, nratio;
74          COLOR  ctrans;
75          COLOR  talb;
76          int  hastexture;
77 +        int     flatsurface;
78          double  refl, trans;
79          FVECT  dnorm;
80          double  d1, d2;
81          RAY  p;
82 <        register int  i;
82 >        int  i;
83  
84 +        /* PMAP: skip refracted shadow or ambient ray if accounted for in
85 +           photon map */
86 +        if (shadowRayInPmap(r) || ambRayInPmap(r))
87 +                return(1);
88 +        
89          if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
90                  objerror(m, USER, "bad arguments");
91  
92          raytexture(r, m->omod);                 /* get modifiers */
93  
94 <        if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
94 >        if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
95                  cos1 = raynormal(dnorm, r);     /* perturb normal */
96          else {
97                  VCOPY(dnorm, r->ron);
98                  cos1 = r->rod;
99          }
100 +        flatsurface = r->ro != NULL && isflat(r->ro->otype) &&
101 +                        !hastexture | (r->crtype & AMBIENT);
102 +
103                                                  /* index of refraction */
104          if (m->otype == MAT_DIELECTRIC)
105                  nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
# Line 153 | Line 168 | register RAY  *r;
168  
169                  trans *= nratio*nratio;         /* solid angle ratio */
170  
171 <                if (rayorigin(&p, r, REFRACTED, trans) == 0) {
171 >                setcolor(p.rcoef, trans, trans, trans);
172  
173 +                if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) {
174 +
175                                                  /* compute refracted ray */
176                          d1 = nratio*cos1 - cos2;
177                          for (i = 0; i < 3; i++)
# Line 167 | Line 184 | register RAY  *r;
184                                          p.rdir[i] = nratio*r->rdir[i] +
185                                                          d1*r->ron[i];
186                                  normalize(p.rdir);      /* not exact */
187 <                        }
187 >                        } else
188 >                                checknorm(p.rdir);
189   #ifdef  DISPERSE
190                          if (m->otype != MAT_DIELECTRIC
191                                          || r->rod > 0.0
# Line 181 | Line 199 | register RAY  *r;
199                                  copycolor(p.cext, ctrans);
200                                  copycolor(p.albedo, talb);
201                                  rayvalue(&p);
202 <                                scalecolor(p.rcol, trans);
202 >                                multcolor(p.rcol, p.rcoef);
203                                  addcolor(r->rcol, p.rcol);
204 <                                if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
205 <                                        r->rt = r->rot + p.rt;
204 >                                                /* virtual distance */
205 >                                if (flatsurface ||
206 >                                        (1.-FTINY <= nratio) &
207 >                                                (nratio <= 1.+FTINY))
208 >                                        r->rxt = r->rot + raydistance(&p);
209                          }
210                  }
211          }
212 <                
212 >        setcolor(p.rcoef, refl, refl, refl);
213 >
214          if (!(r->crtype & SHADOW) &&
215 <                        rayorigin(&p, r, REFLECTED, refl) == 0) {
215 >                        rayorigin(&p, REFLECTED, r, p.rcoef) == 0) {
216  
217                                          /* compute reflected ray */
218 <                for (i = 0; i < 3; i++)
197 <                        p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
218 >                VSUM(p.rdir, r->rdir, dnorm, 2.*cos1);
219                                          /* accidental penetration? */
220                  if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
221 <                        for (i = 0; i < 3; i++)         /* ignore texture */
222 <                                p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i];
202 <
221 >                        VSUM(p.rdir, r->rdir, r->ron, 2.*r->rod);
222 >                checknorm(p.rdir);
223                  rayvalue(&p);                   /* reflected ray value */
224  
225 <                scalecolor(p.rcol, refl);       /* color contribution */
225 >                multcolor(p.rcol, p.rcoef);     /* color contribution */
226 >                copycolor(r->mcol, p.rcol);
227                  addcolor(r->rcol, p.rcol);
228 +                                                /* virtual distance */
229 +                r->rmt = r->rot;
230 +                if (flatsurface)
231 +                        r->rmt += raydistance(&p);
232          }
233                                  /* rayvalue() computes absorption */
234          return(1);
# Line 212 | Line 237 | register RAY  *r;
237  
238   #ifdef  DISPERSE
239  
240 < static
241 < disperse(m, r, vt, tr, cet, abt)  /* check light sources for dispersion */
242 < OBJREC  *m;
243 < RAY  *r;
244 < FVECT  vt;
245 < double  tr;
246 < COLOR  cet, abt;
240 > static int
241 > disperse(  /* check light sources for dispersion */
242 >        OBJREC  *m,
243 >        RAY  *r,
244 >        FVECT  vt,
245 >        double  tr,
246 >        COLOR  cet,
247 >        COLOR  abt
248 > )
249   {
250 <        RAY  sray, *entray;
250 >        RAY  sray;
251 >        const RAY  *entray;
252          FVECT  v1, v2, n1, n2;
253          FVECT  dv, v2Xdv;
254          double  v2Xdvv2Xdv;
# Line 275 | Line 303 | COLOR  cet, abt;
303          VCOPY(n2, r->ron);
304  
305                                          /* first order dispersion approx. */
306 <        dtmp1 = DOT(n1, v1);
307 <        dtmp2 = DOT(n2, v2);
306 >        dtmp1 = 1./DOT(n1, v1);
307 >        dtmp2 = 1./DOT(n2, v2);
308          for (i = 0; i < 3; i++)
309 <                dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
309 >                dv[i] = v1[i] + v2[i] - n1[i]*dtmp1 - n2[i]*dtmp2;
310                  
311          if (DOT(dv, dv) <= FTINY)       /* null effect */
312                  return(0);
# Line 321 | Line 349 | COLOR  cet, abt;
349                  dtmp1 = sqrt(si.dom  / v2Xdvv2Xdv / PI);
350  
351                                                          /* compute first ray */
352 <                for (i = 0; i < 3; i++)
325 <                        vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
352 >                VSUM(vtmp2, sray.rdir, vtmp1, dtmp1);
353  
354                  l1 = lambda(m, v2, dv, vtmp2);          /* first lambda */
355                  if (l1 < 0)
356                          continue;
357                                                          /* compute second ray */
358 <                for (i = 0; i < 3; i++)
332 <                        vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
358 >                VSUM(vtmp2, sray.rdir, vtmp1, -dtmp1);
359  
360                  l2 = lambda(m, v2, dv, vtmp2);          /* second lambda */
361                  if (l2 < 0)
# Line 349 | Line 375 | COLOR  cet, abt;
375  
376  
377   static int
378 < lambda(m, v2, dv, lr)                   /* compute lambda for material */
379 < register OBJREC  *m;
380 < FVECT  v2, dv, lr;
378 > lambda(                 /* compute lambda for material */
379 >        OBJREC  *m,
380 >        FVECT  v2,
381 >        FVECT  dv,
382 >        FVECT  lr
383 > )
384   {
385          FVECT  lrXdv, v2Xlr;
386          double  dtmp, denom;
# Line 359 | Line 388 | FVECT  v2, dv, lr;
388  
389          fcross(lrXdv, lr, dv);
390          for (i = 0; i < 3; i++)
391 <                if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
391 >                if ((lrXdv[i] > FTINY) | (lrXdv[i] < -FTINY))
392                          break;
393          if (i >= 3)
394                  return(-1);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines