| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: dielectric.c,v 2.31 2023/11/15 18:02:52 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* dielectric.c - shading function for transparent materials.
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include "copyright.h"
|
| 9 |
|
| 10 |
#include "ray.h"
|
| 11 |
#include "otypes.h"
|
| 12 |
#include "rtotypes.h"
|
| 13 |
#include "pmapmat.h"
|
| 14 |
|
| 15 |
#ifdef DISPERSE
|
| 16 |
#include "source.h"
|
| 17 |
static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt);
|
| 18 |
static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr);
|
| 19 |
#endif
|
| 20 |
|
| 21 |
static double mylog(double x);
|
| 22 |
|
| 23 |
|
| 24 |
/*
|
| 25 |
* Explicit calculations for Fresnel's equation are performed,
|
| 26 |
* but only one square root computation is necessary.
|
| 27 |
* The index of refraction is given as a Hartmann equation
|
| 28 |
* with lambda0 equal to zero. If the slope of Hartmann's
|
| 29 |
* equation is non-zero, the material disperses light upon
|
| 30 |
* refraction. This condition is examined on rays traced to
|
| 31 |
* light sources. If a ray is exiting a dielectric material, we
|
| 32 |
* check the sources to see if any would cause bright color to be
|
| 33 |
* directed to the viewer due to dispersion. This gives colorful
|
| 34 |
* sparkle to crystals, etc. (Only if DISPERSE is defined!)
|
| 35 |
*
|
| 36 |
* Arguments for MAT_DIELECTRIC are:
|
| 37 |
* red grn blu rndx Hartmann
|
| 38 |
*
|
| 39 |
* Arguments for MAT_INTERFACE are:
|
| 40 |
* red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
|
| 41 |
*
|
| 42 |
* The primaries are material transmission per unit length.
|
| 43 |
* MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
|
| 44 |
* outside.
|
| 45 |
*/
|
| 46 |
|
| 47 |
|
| 48 |
#define MLAMBDA 500 /* mean lambda */
|
| 49 |
#define MAXLAMBDA 779 /* maximum lambda */
|
| 50 |
#define MINLAMBDA 380 /* minimum lambda */
|
| 51 |
|
| 52 |
#define MINCOS 0.997 /* minimum dot product for dispersion */
|
| 53 |
|
| 54 |
static double
|
| 55 |
mylog( /* special log for extinction coefficients */
|
| 56 |
double x
|
| 57 |
)
|
| 58 |
{
|
| 59 |
if (x < 1e-40)
|
| 60 |
return(-100.);
|
| 61 |
if (x >= 1.)
|
| 62 |
return(0.);
|
| 63 |
return(log(x));
|
| 64 |
}
|
| 65 |
|
| 66 |
|
| 67 |
int
|
| 68 |
m_dielectric( /* color a ray which hit a dielectric interface */
|
| 69 |
OBJREC *m,
|
| 70 |
RAY *r
|
| 71 |
)
|
| 72 |
{
|
| 73 |
double cos1, cos2, nratio;
|
| 74 |
COLOR pcol, ctrans, talb;
|
| 75 |
int hastexture;
|
| 76 |
int flatsurface;
|
| 77 |
double refl, trans;
|
| 78 |
FVECT dnorm;
|
| 79 |
double d1, d2;
|
| 80 |
RAY p;
|
| 81 |
int i;
|
| 82 |
|
| 83 |
/* PMAP: skip refracted shadow or ambient ray if accounted for in
|
| 84 |
photon map */
|
| 85 |
if (shadowRayInPmap(r) || ambRayInPmap(r))
|
| 86 |
return(1);
|
| 87 |
|
| 88 |
if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
|
| 89 |
objerror(m, USER, "bad arguments");
|
| 90 |
|
| 91 |
raytexture(r, m->omod); /* get modifiers */
|
| 92 |
|
| 93 |
if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
|
| 94 |
cos1 = raynormal(dnorm, r); /* perturb normal */
|
| 95 |
else {
|
| 96 |
VCOPY(dnorm, r->ron);
|
| 97 |
cos1 = r->rod;
|
| 98 |
}
|
| 99 |
flatsurface = r->ro != NULL && isflat(r->ro->otype) &&
|
| 100 |
!hastexture | (r->crtype & AMBIENT);
|
| 101 |
|
| 102 |
/* index of refraction */
|
| 103 |
if (m->otype == MAT_DIELECTRIC)
|
| 104 |
nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
|
| 105 |
else
|
| 106 |
nratio = m->oargs.farg[3] / m->oargs.farg[7];
|
| 107 |
|
| 108 |
scolor_rgb(pcol, r->pcol);
|
| 109 |
if (cos1 < 0.0) { /* inside */
|
| 110 |
hastexture = -hastexture;
|
| 111 |
cos1 = -cos1;
|
| 112 |
dnorm[0] = -dnorm[0];
|
| 113 |
dnorm[1] = -dnorm[1];
|
| 114 |
dnorm[2] = -dnorm[2];
|
| 115 |
setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(pcol,RED)),
|
| 116 |
-mylog(m->oargs.farg[1]*colval(pcol,GRN)),
|
| 117 |
-mylog(m->oargs.farg[2]*colval(pcol,BLU)));
|
| 118 |
setcolor(r->albedo, 0., 0., 0.);
|
| 119 |
r->gecc = 0.;
|
| 120 |
if (m->otype == MAT_INTERFACE) {
|
| 121 |
setcolor(ctrans,
|
| 122 |
-mylog(m->oargs.farg[4]*colval(pcol,RED)),
|
| 123 |
-mylog(m->oargs.farg[5]*colval(pcol,GRN)),
|
| 124 |
-mylog(m->oargs.farg[6]*colval(pcol,BLU)));
|
| 125 |
setcolor(talb, 0., 0., 0.);
|
| 126 |
} else {
|
| 127 |
copycolor(ctrans, cextinction);
|
| 128 |
copycolor(talb, salbedo);
|
| 129 |
}
|
| 130 |
} else { /* outside */
|
| 131 |
nratio = 1.0 / nratio;
|
| 132 |
|
| 133 |
setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(pcol,RED)),
|
| 134 |
-mylog(m->oargs.farg[1]*colval(pcol,GRN)),
|
| 135 |
-mylog(m->oargs.farg[2]*colval(pcol,BLU)));
|
| 136 |
setcolor(talb, 0., 0., 0.);
|
| 137 |
if (m->otype == MAT_INTERFACE) {
|
| 138 |
setcolor(r->cext,
|
| 139 |
-mylog(m->oargs.farg[4]*colval(pcol,RED)),
|
| 140 |
-mylog(m->oargs.farg[5]*colval(pcol,GRN)),
|
| 141 |
-mylog(m->oargs.farg[6]*colval(pcol,BLU)));
|
| 142 |
setcolor(r->albedo, 0., 0., 0.);
|
| 143 |
r->gecc = 0.;
|
| 144 |
}
|
| 145 |
}
|
| 146 |
|
| 147 |
d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
|
| 148 |
|
| 149 |
if (d2 < FTINY) /* total reflection */
|
| 150 |
|
| 151 |
refl = 1.0;
|
| 152 |
|
| 153 |
else { /* refraction occurs */
|
| 154 |
/* compute Fresnel's equations */
|
| 155 |
cos2 = sqrt(d2);
|
| 156 |
d1 = cos1;
|
| 157 |
d2 = nratio*cos2;
|
| 158 |
d1 = (d1 - d2) / (d1 + d2);
|
| 159 |
refl = d1 * d1;
|
| 160 |
|
| 161 |
d1 = 1.0 / cos1;
|
| 162 |
d2 = nratio / cos2;
|
| 163 |
d1 = (d1 - d2) / (d1 + d2);
|
| 164 |
refl += d1 * d1;
|
| 165 |
|
| 166 |
refl *= 0.5;
|
| 167 |
trans = 1.0 - refl;
|
| 168 |
|
| 169 |
trans *= nratio*nratio; /* solid angle ratio */
|
| 170 |
|
| 171 |
setscolor(p.rcoef, trans, trans, trans);
|
| 172 |
|
| 173 |
if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) {
|
| 174 |
|
| 175 |
/* compute refracted ray */
|
| 176 |
d1 = nratio*cos1 - cos2;
|
| 177 |
for (i = 0; i < 3; i++)
|
| 178 |
p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
|
| 179 |
/* accidental reflection? */
|
| 180 |
if (hastexture &&
|
| 181 |
DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
|
| 182 |
d1 *= (double)hastexture;
|
| 183 |
for (i = 0; i < 3; i++) /* ignore texture */
|
| 184 |
p.rdir[i] = nratio*r->rdir[i] +
|
| 185 |
d1*r->ron[i];
|
| 186 |
normalize(p.rdir); /* not exact */
|
| 187 |
} else
|
| 188 |
checknorm(p.rdir);
|
| 189 |
#ifdef DISPERSE
|
| 190 |
if (m->otype != MAT_DIELECTRIC
|
| 191 |
|| r->rod > 0.0
|
| 192 |
|| r->crtype & SHADOW
|
| 193 |
|| !directvis
|
| 194 |
|| m->oargs.farg[4] == 0.0
|
| 195 |
|| !disperse(m, r, p.rdir,
|
| 196 |
trans, ctrans, talb))
|
| 197 |
#endif
|
| 198 |
{
|
| 199 |
copycolor(p.cext, ctrans);
|
| 200 |
copycolor(p.albedo, talb);
|
| 201 |
rayvalue(&p);
|
| 202 |
smultscolor(p.rcol, p.rcoef);
|
| 203 |
saddscolor(r->rcol, p.rcol);
|
| 204 |
/* virtual distance */
|
| 205 |
if (flatsurface ||
|
| 206 |
(1.-FTINY <= nratio) &
|
| 207 |
(nratio <= 1.+FTINY))
|
| 208 |
r->rxt = r->rot + raydistance(&p);
|
| 209 |
}
|
| 210 |
}
|
| 211 |
}
|
| 212 |
setscolor(p.rcoef, refl, refl, refl);
|
| 213 |
|
| 214 |
if (!(r->crtype & SHADOW) &&
|
| 215 |
rayorigin(&p, REFLECTED, r, p.rcoef) == 0) {
|
| 216 |
|
| 217 |
/* compute reflected ray */
|
| 218 |
VSUM(p.rdir, r->rdir, dnorm, 2.*cos1);
|
| 219 |
/* accidental penetration? */
|
| 220 |
if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
|
| 221 |
VSUM(p.rdir, r->rdir, r->ron, 2.*r->rod);
|
| 222 |
checknorm(p.rdir);
|
| 223 |
rayvalue(&p); /* reflected ray value */
|
| 224 |
|
| 225 |
smultscolor(p.rcol, p.rcoef); /* color contribution */
|
| 226 |
copyscolor(r->mcol, p.rcol);
|
| 227 |
saddscolor(r->rcol, p.rcol);
|
| 228 |
/* virtual distance */
|
| 229 |
r->rmt = r->rot;
|
| 230 |
if (flatsurface)
|
| 231 |
r->rmt += raydistance(&p);
|
| 232 |
}
|
| 233 |
/* rayvalue() computes absorption */
|
| 234 |
return(1);
|
| 235 |
}
|
| 236 |
|
| 237 |
|
| 238 |
#ifdef DISPERSE
|
| 239 |
|
| 240 |
static int
|
| 241 |
disperse( /* check light sources for dispersion */
|
| 242 |
OBJREC *m,
|
| 243 |
RAY *r,
|
| 244 |
FVECT vt,
|
| 245 |
double tr,
|
| 246 |
COLOR cet,
|
| 247 |
COLOR abt
|
| 248 |
)
|
| 249 |
{
|
| 250 |
RAY sray;
|
| 251 |
const RAY *entray;
|
| 252 |
FVECT v1, v2, n1, n2;
|
| 253 |
FVECT dv, v2Xdv;
|
| 254 |
double v2Xdvv2Xdv;
|
| 255 |
int success = 0;
|
| 256 |
SRCINDEX si;
|
| 257 |
FVECT vtmp1, vtmp2;
|
| 258 |
double dtmp1, dtmp2;
|
| 259 |
int l1, l2;
|
| 260 |
COLOR ctmp;
|
| 261 |
int i;
|
| 262 |
|
| 263 |
/*
|
| 264 |
* This routine computes dispersion to the first order using
|
| 265 |
* the following assumptions:
|
| 266 |
*
|
| 267 |
* 1) The dependency of the index of refraction on wavelength
|
| 268 |
* is approximated by Hartmann's equation with lambda0
|
| 269 |
* equal to zero.
|
| 270 |
* 2) The entry and exit locations are constant with respect
|
| 271 |
* to dispersion.
|
| 272 |
*
|
| 273 |
* The second assumption permits us to model dispersion without
|
| 274 |
* having to sample refracted directions. We assume that the
|
| 275 |
* geometry inside the material is constant, and concern ourselves
|
| 276 |
* only with the relationship between the entering and exiting ray.
|
| 277 |
* We compute the first derivatives of the entering and exiting
|
| 278 |
* refraction with respect to the index of refraction. This
|
| 279 |
* is then used in a first order Taylor series to determine the
|
| 280 |
* index of refraction necessary to send the exiting ray to each
|
| 281 |
* light source.
|
| 282 |
* If an exiting ray hits a light source within the refraction
|
| 283 |
* boundaries, we sum all the frequencies over the disc of the
|
| 284 |
* light source to determine the resulting color. A smaller light
|
| 285 |
* source will therefore exhibit a sharper spectrum.
|
| 286 |
*/
|
| 287 |
|
| 288 |
if (!(r->crtype & REFRACTED)) { /* ray started in material */
|
| 289 |
VCOPY(v1, r->rdir);
|
| 290 |
n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
|
| 291 |
} else {
|
| 292 |
/* find entry point */
|
| 293 |
for (entray = r; entray->rtype != REFRACTED;
|
| 294 |
entray = entray->parent)
|
| 295 |
;
|
| 296 |
entray = entray->parent;
|
| 297 |
if (entray->crtype & REFRACTED) /* too difficult */
|
| 298 |
return(0);
|
| 299 |
VCOPY(v1, entray->rdir);
|
| 300 |
VCOPY(n1, entray->ron);
|
| 301 |
}
|
| 302 |
VCOPY(v2, vt); /* exiting ray */
|
| 303 |
VCOPY(n2, r->ron);
|
| 304 |
|
| 305 |
/* first order dispersion approx. */
|
| 306 |
dtmp1 = 1./DOT(n1, v1);
|
| 307 |
dtmp2 = 1./DOT(n2, v2);
|
| 308 |
for (i = 0; i < 3; i++)
|
| 309 |
dv[i] = v1[i] + v2[i] - n1[i]*dtmp1 - n2[i]*dtmp2;
|
| 310 |
|
| 311 |
if (DOT(dv, dv) <= FTINY) /* null effect */
|
| 312 |
return(0);
|
| 313 |
/* compute plane normal */
|
| 314 |
fcross(v2Xdv, v2, dv);
|
| 315 |
v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
|
| 316 |
|
| 317 |
/* check sources */
|
| 318 |
initsrcindex(&si);
|
| 319 |
while (srcray(&sray, r, &si)) {
|
| 320 |
|
| 321 |
if (DOT(sray.rdir, v2) < MINCOS)
|
| 322 |
continue; /* bad source */
|
| 323 |
/* adjust source ray */
|
| 324 |
|
| 325 |
dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
|
| 326 |
sray.rdir[0] -= dtmp1 * v2Xdv[0];
|
| 327 |
sray.rdir[1] -= dtmp1 * v2Xdv[1];
|
| 328 |
sray.rdir[2] -= dtmp1 * v2Xdv[2];
|
| 329 |
|
| 330 |
l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
|
| 331 |
|
| 332 |
if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
|
| 333 |
continue;
|
| 334 |
/* trace source ray */
|
| 335 |
copycolor(sray.cext, cet);
|
| 336 |
copycolor(sray.albedo, abt);
|
| 337 |
normalize(sray.rdir);
|
| 338 |
rayvalue(&sray);
|
| 339 |
if (pbright(sray.rcol) <= FTINY) /* missed it */
|
| 340 |
continue;
|
| 341 |
|
| 342 |
/*
|
| 343 |
* Compute spectral sum over diameter of source.
|
| 344 |
* First find directions for rays going to opposite
|
| 345 |
* sides of source, then compute wavelengths for each.
|
| 346 |
*/
|
| 347 |
|
| 348 |
fcross(vtmp1, v2Xdv, sray.rdir);
|
| 349 |
dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
|
| 350 |
|
| 351 |
/* compute first ray */
|
| 352 |
VSUM(vtmp2, sray.rdir, vtmp1, dtmp1);
|
| 353 |
|
| 354 |
l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
|
| 355 |
if (l1 < 0)
|
| 356 |
continue;
|
| 357 |
/* compute second ray */
|
| 358 |
VSUM(vtmp2, sray.rdir, vtmp1, -dtmp1);
|
| 359 |
|
| 360 |
l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
|
| 361 |
if (l2 < 0)
|
| 362 |
continue;
|
| 363 |
/* compute color from spectrum */
|
| 364 |
if (l1 < l2) /* XXX should use direct spectral xfer */
|
| 365 |
spec_rgb(ctmp, l1, l2);
|
| 366 |
else
|
| 367 |
spec_rgb(ctmp, l2, l1);
|
| 368 |
multscolor(ctmp, sray.rcol);
|
| 369 |
scalecolor(ctmp, tr);
|
| 370 |
saddcolor(r->rcol, ctmp);
|
| 371 |
success++;
|
| 372 |
}
|
| 373 |
return(success);
|
| 374 |
}
|
| 375 |
|
| 376 |
|
| 377 |
static int
|
| 378 |
lambda( /* compute lambda for material */
|
| 379 |
OBJREC *m,
|
| 380 |
FVECT v2,
|
| 381 |
FVECT dv,
|
| 382 |
FVECT lr
|
| 383 |
)
|
| 384 |
{
|
| 385 |
FVECT lrXdv, v2Xlr;
|
| 386 |
double dtmp, denom;
|
| 387 |
int i;
|
| 388 |
|
| 389 |
fcross(lrXdv, lr, dv);
|
| 390 |
for (i = 0; i < 3; i++)
|
| 391 |
if ((lrXdv[i] > FTINY) | (lrXdv[i] < -FTINY))
|
| 392 |
break;
|
| 393 |
if (i >= 3)
|
| 394 |
return(-1);
|
| 395 |
|
| 396 |
fcross(v2Xlr, v2, lr);
|
| 397 |
|
| 398 |
dtmp = m->oargs.farg[4] / MLAMBDA;
|
| 399 |
denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
|
| 400 |
|
| 401 |
if (denom < FTINY)
|
| 402 |
return(-1);
|
| 403 |
|
| 404 |
return(m->oargs.farg[4] / denom);
|
| 405 |
}
|
| 406 |
|
| 407 |
#endif /* DISPERSE */
|