ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.5
Committed: Mon Mar 8 12:37:15 1993 UTC (31 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +1 -0 lines
Log Message:
portability fixes (removed gcc warnings)

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1986 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * dielectric.c - shading function for transparent materials.
9     *
10     * 9/6/85
11     */
12    
13     #include "ray.h"
14    
15     #include "otypes.h"
16    
17     #ifdef DISPERSE
18     #include "source.h"
19 greg 2.5 static disperse();
20 greg 1.1 #endif
21    
22     /*
23     * Explicit calculations for Fresnel's equation are performed,
24     * but only one square root computation is necessary.
25     * The index of refraction is given as a Hartmann equation
26     * with lambda0 equal to zero. If the slope of Hartmann's
27     * equation is non-zero, the material disperses light upon
28     * refraction. This condition is examined on rays traced to
29     * light sources. If a ray is exiting a dielectric material, we
30     * check the sources to see if any would cause bright color to be
31     * directed to the viewer due to dispersion. This gives colorful
32     * sparkle to crystals, etc. (Only if DISPERSE is defined!)
33     *
34     * Arguments for MAT_DIELECTRIC are:
35     * red grn blu rndx Hartmann
36     *
37     * Arguments for MAT_INTERFACE are:
38     * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
39     *
40     * The primaries are material transmission per unit length.
41     * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
42     * outside.
43     */
44    
45    
46     #define MLAMBDA 500 /* mean lambda */
47     #define MAXLAMBDA 779 /* maximum lambda */
48     #define MINLAMBDA 380 /* minimum lambda */
49    
50     #define MINCOS 0.997 /* minimum dot product for dispersion */
51    
52    
53     m_dielectric(m, r) /* color a ray which hit something transparent */
54     OBJREC *m;
55     register RAY *r;
56     {
57     double cos1, cos2, nratio;
58     COLOR mcolor;
59     double mabsorp;
60 greg 1.5 double refl, trans;
61 greg 1.1 FVECT dnorm;
62     double d1, d2;
63     RAY p;
64     register int i;
65    
66     if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
67     objerror(m, USER, "bad arguments");
68    
69     raytexture(r, m->omod); /* get modifiers */
70    
71     cos1 = raynormal(dnorm, r); /* cosine of theta1 */
72     /* index of refraction */
73     if (m->otype == MAT_DIELECTRIC)
74     nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
75     else
76     nratio = m->oargs.farg[3] / m->oargs.farg[7];
77    
78     if (cos1 < 0.0) { /* inside */
79     cos1 = -cos1;
80     dnorm[0] = -dnorm[0];
81     dnorm[1] = -dnorm[1];
82     dnorm[2] = -dnorm[2];
83     setcolor(mcolor, pow(m->oargs.farg[0], r->rot),
84     pow(m->oargs.farg[1], r->rot),
85     pow(m->oargs.farg[2], r->rot));
86     } else { /* outside */
87     nratio = 1.0 / nratio;
88     if (m->otype == MAT_INTERFACE)
89     setcolor(mcolor, pow(m->oargs.farg[4], r->rot),
90     pow(m->oargs.farg[5], r->rot),
91     pow(m->oargs.farg[6], r->rot));
92     else
93     setcolor(mcolor, 1.0, 1.0, 1.0);
94     }
95 greg 1.2 mabsorp = bright(mcolor);
96 greg 1.1
97     d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
98    
99     if (d2 < FTINY) /* total reflection */
100    
101     refl = 1.0;
102    
103     else { /* refraction occurs */
104     /* compute Fresnel's equations */
105     cos2 = sqrt(d2);
106     d1 = cos1;
107     d2 = nratio*cos2;
108     d1 = (d1 - d2) / (d1 + d2);
109     refl = d1 * d1;
110    
111     d1 = 1.0 / cos1;
112     d2 = nratio / cos2;
113     d1 = (d1 - d2) / (d1 + d2);
114     refl += d1 * d1;
115    
116     refl /= 2.0;
117     trans = 1.0 - refl;
118    
119     if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
120    
121     /* compute refracted ray */
122     d1 = nratio*cos1 - cos2;
123     for (i = 0; i < 3; i++)
124     p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
125    
126     #ifdef DISPERSE
127     if (m->otype != MAT_DIELECTRIC
128     || r->rod > 0.0
129     || r->crtype & SHADOW
130 greg 2.3 || !directvis
131 greg 1.1 || m->oargs.farg[4] == 0.0
132     || !disperse(m, r, p.rdir, trans))
133     #endif
134     {
135     rayvalue(&p);
136     multcolor(mcolor, r->pcol); /* modify */
137     scalecolor(p.rcol, trans);
138     addcolor(r->rcol, p.rcol);
139 greg 2.4 if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
140     r->rt = r->rot + p.rt;
141 greg 1.1 }
142     }
143     }
144    
145     if (!(r->crtype & SHADOW) &&
146     rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
147    
148     /* compute reflected ray */
149     for (i = 0; i < 3; i++)
150     p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
151    
152     rayvalue(&p); /* reflected ray value */
153    
154     scalecolor(p.rcol, refl); /* color contribution */
155     addcolor(r->rcol, p.rcol);
156     }
157    
158     multcolor(r->rcol, mcolor); /* multiply by transmittance */
159     }
160    
161    
162     #ifdef DISPERSE
163    
164     static
165     disperse(m, r, vt, tr) /* check light sources for dispersion */
166     OBJREC *m;
167     RAY *r;
168     FVECT vt;
169     double tr;
170     {
171     RAY sray, *entray;
172     FVECT v1, v2, n1, n2;
173     FVECT dv, v2Xdv;
174     double v2Xdvv2Xdv;
175 greg 1.7 int success = 0;
176     SRCINDEX si;
177 greg 1.1 FVECT vtmp1, vtmp2;
178     double dtmp1, dtmp2;
179     int l1, l2;
180     COLOR ctmp;
181     int i;
182    
183     /*
184     * This routine computes dispersion to the first order using
185     * the following assumptions:
186     *
187     * 1) The dependency of the index of refraction on wavelength
188     * is approximated by Hartmann's equation with lambda0
189     * equal to zero.
190     * 2) The entry and exit locations are constant with respect
191     * to dispersion.
192     *
193     * The second assumption permits us to model dispersion without
194     * having to sample refracted directions. We assume that the
195     * geometry inside the material is constant, and concern ourselves
196     * only with the relationship between the entering and exiting ray.
197     * We compute the first derivatives of the entering and exiting
198     * refraction with respect to the index of refraction. This
199     * is then used in a first order Taylor series to determine the
200     * index of refraction necessary to send the exiting ray to each
201     * light source.
202     * If an exiting ray hits a light source within the refraction
203     * boundaries, we sum all the frequencies over the disc of the
204     * light source to determine the resulting color. A smaller light
205     * source will therefore exhibit a sharper spectrum.
206     */
207    
208     if (!(r->crtype & REFRACTED)) { /* ray started in material */
209     VCOPY(v1, r->rdir);
210     n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
211     } else {
212     /* find entry point */
213     for (entray = r; entray->rtype != REFRACTED;
214     entray = entray->parent)
215     ;
216     entray = entray->parent;
217     if (entray->crtype & REFRACTED) /* too difficult */
218     return(0);
219     VCOPY(v1, entray->rdir);
220     VCOPY(n1, entray->ron);
221     }
222     VCOPY(v2, vt); /* exiting ray */
223     VCOPY(n2, r->ron);
224    
225     /* first order dispersion approx. */
226     dtmp1 = DOT(n1, v1);
227     dtmp2 = DOT(n2, v2);
228     for (i = 0; i < 3; i++)
229     dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
230    
231     if (DOT(dv, dv) <= FTINY) /* null effect */
232     return(0);
233     /* compute plane normal */
234     fcross(v2Xdv, v2, dv);
235     v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
236    
237     /* check sources */
238 greg 1.7 initsrcindex(&si);
239     while (srcray(&sray, r, &si)) {
240 greg 1.1
241 greg 1.7 if (DOT(sray.rdir, v2) < MINCOS)
242 greg 1.1 continue; /* bad source */
243     /* adjust source ray */
244    
245     dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
246     sray.rdir[0] -= dtmp1 * v2Xdv[0];
247     sray.rdir[1] -= dtmp1 * v2Xdv[1];
248     sray.rdir[2] -= dtmp1 * v2Xdv[2];
249    
250     l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
251    
252     if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
253     continue;
254     /* trace source ray */
255     normalize(sray.rdir);
256     rayvalue(&sray);
257 greg 1.2 if (bright(sray.rcol) <= FTINY) /* missed it */
258 greg 1.1 continue;
259    
260     /*
261     * Compute spectral sum over diameter of source.
262     * First find directions for rays going to opposite
263     * sides of source, then compute wavelengths for each.
264     */
265    
266     fcross(vtmp1, v2Xdv, sray.rdir);
267 greg 1.7 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
268 greg 1.1
269     /* compute first ray */
270     for (i = 0; i < 3; i++)
271     vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
272    
273     l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
274     if (l1 < 0)
275     continue;
276     /* compute second ray */
277     for (i = 0; i < 3; i++)
278     vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
279    
280     l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
281     if (l2 < 0)
282     continue;
283     /* compute color from spectrum */
284     if (l1 < l2)
285     spec_rgb(ctmp, l1, l2);
286     else
287     spec_rgb(ctmp, l2, l1);
288     multcolor(ctmp, sray.rcol);
289     scalecolor(ctmp, tr);
290     addcolor(r->rcol, ctmp);
291     success++;
292     }
293     return(success);
294     }
295    
296    
297     static int
298     lambda(m, v2, dv, lr) /* compute lambda for material */
299     register OBJREC *m;
300     FVECT v2, dv, lr;
301     {
302     FVECT lrXdv, v2Xlr;
303     double dtmp, denom;
304     int i;
305    
306     fcross(lrXdv, lr, dv);
307     for (i = 0; i < 3; i++)
308     if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
309     break;
310     if (i >= 3)
311     return(-1);
312    
313     fcross(v2Xlr, v2, lr);
314    
315     dtmp = m->oargs.farg[4] / MLAMBDA;
316     denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
317    
318     if (denom < FTINY)
319     return(-1);
320    
321     return(m->oargs.farg[4] / denom);
322     }
323    
324     #endif /* DISPERSE */