ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.32
Committed: Fri Nov 17 20:02:07 2023 UTC (5 months, 3 weeks ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.31: +2 -2 lines
Log Message:
fix: multiple bug fixes in hyperspectral code, added rvu, mkillum, rsensor, and ranimove to "working except photon map" status

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.32 static const char RCSid[] = "$Id: dielectric.c,v 2.31 2023/11/15 18:02:52 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * dielectric.c - shading function for transparent materials.
6 greg 2.15 */
7    
8 greg 2.16 #include "copyright.h"
9 greg 1.1
10     #include "ray.h"
11     #include "otypes.h"
12 schorsch 2.18 #include "rtotypes.h"
13 greg 2.25 #include "pmapmat.h"
14 greg 1.1
15     #ifdef DISPERSE
16     #include "source.h"
17 schorsch 2.18 static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt);
18     static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr);
19 greg 1.1 #endif
20    
21 schorsch 2.18 static double mylog(double x);
22    
23    
24 greg 1.1 /*
25     * Explicit calculations for Fresnel's equation are performed,
26     * but only one square root computation is necessary.
27     * The index of refraction is given as a Hartmann equation
28     * with lambda0 equal to zero. If the slope of Hartmann's
29     * equation is non-zero, the material disperses light upon
30     * refraction. This condition is examined on rays traced to
31     * light sources. If a ray is exiting a dielectric material, we
32     * check the sources to see if any would cause bright color to be
33     * directed to the viewer due to dispersion. This gives colorful
34     * sparkle to crystals, etc. (Only if DISPERSE is defined!)
35     *
36     * Arguments for MAT_DIELECTRIC are:
37     * red grn blu rndx Hartmann
38     *
39     * Arguments for MAT_INTERFACE are:
40     * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
41     *
42     * The primaries are material transmission per unit length.
43     * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
44     * outside.
45     */
46    
47    
48     #define MLAMBDA 500 /* mean lambda */
49     #define MAXLAMBDA 779 /* maximum lambda */
50     #define MINLAMBDA 380 /* minimum lambda */
51    
52     #define MINCOS 0.997 /* minimum dot product for dispersion */
53    
54 greg 2.27 static double
55 schorsch 2.18 mylog( /* special log for extinction coefficients */
56     double x
57     )
58 greg 2.10 {
59     if (x < 1e-40)
60     return(-100.);
61     if (x >= 1.)
62     return(0.);
63     return(log(x));
64     }
65    
66    
67 greg 2.24 int
68 schorsch 2.18 m_dielectric( /* color a ray which hit a dielectric interface */
69     OBJREC *m,
70 greg 2.24 RAY *r
71 schorsch 2.18 )
72 greg 1.1 {
73     double cos1, cos2, nratio;
74 greg 2.31 COLOR pcol, ctrans, talb;
75 gwlarson 2.14 int hastexture;
76 greg 2.19 int flatsurface;
77 greg 1.5 double refl, trans;
78 greg 1.1 FVECT dnorm;
79     double d1, d2;
80     RAY p;
81 greg 2.24 int i;
82 greg 1.1
83 rschregle 2.26 /* PMAP: skip refracted shadow or ambient ray if accounted for in
84     photon map */
85 greg 2.28 if (shadowRayInPmap(r) || ambRayInPmap(r))
86 greg 2.25 return(1);
87    
88 greg 1.1 if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
89     objerror(m, USER, "bad arguments");
90    
91     raytexture(r, m->omod); /* get modifiers */
92    
93 schorsch 2.17 if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
94 gwlarson 2.14 cos1 = raynormal(dnorm, r); /* perturb normal */
95     else {
96     VCOPY(dnorm, r->ron);
97     cos1 = r->rod;
98     }
99 greg 2.24 flatsurface = r->ro != NULL && isflat(r->ro->otype) &&
100     !hastexture | (r->crtype & AMBIENT);
101 greg 2.19
102 greg 1.1 /* index of refraction */
103     if (m->otype == MAT_DIELECTRIC)
104     nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
105     else
106     nratio = m->oargs.farg[3] / m->oargs.farg[7];
107 greg 2.31
108     scolor_rgb(pcol, r->pcol);
109 greg 1.1 if (cos1 < 0.0) { /* inside */
110 gwlarson 2.14 hastexture = -hastexture;
111 greg 1.1 cos1 = -cos1;
112     dnorm[0] = -dnorm[0];
113     dnorm[1] = -dnorm[1];
114     dnorm[2] = -dnorm[2];
115 greg 2.31 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(pcol,RED)),
116     -mylog(m->oargs.farg[1]*colval(pcol,GRN)),
117     -mylog(m->oargs.farg[2]*colval(pcol,BLU)));
118 greg 2.11 setcolor(r->albedo, 0., 0., 0.);
119 greg 2.9 r->gecc = 0.;
120     if (m->otype == MAT_INTERFACE) {
121     setcolor(ctrans,
122 greg 2.31 -mylog(m->oargs.farg[4]*colval(pcol,RED)),
123     -mylog(m->oargs.farg[5]*colval(pcol,GRN)),
124     -mylog(m->oargs.farg[6]*colval(pcol,BLU)));
125 greg 2.11 setcolor(talb, 0., 0., 0.);
126 greg 2.9 } else {
127     copycolor(ctrans, cextinction);
128 greg 2.11 copycolor(talb, salbedo);
129 greg 2.9 }
130 greg 1.1 } else { /* outside */
131     nratio = 1.0 / nratio;
132 greg 2.9
133 greg 2.31 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(pcol,RED)),
134     -mylog(m->oargs.farg[1]*colval(pcol,GRN)),
135     -mylog(m->oargs.farg[2]*colval(pcol,BLU)));
136 greg 2.11 setcolor(talb, 0., 0., 0.);
137 greg 2.9 if (m->otype == MAT_INTERFACE) {
138     setcolor(r->cext,
139 greg 2.31 -mylog(m->oargs.farg[4]*colval(pcol,RED)),
140     -mylog(m->oargs.farg[5]*colval(pcol,GRN)),
141     -mylog(m->oargs.farg[6]*colval(pcol,BLU)));
142 greg 2.11 setcolor(r->albedo, 0., 0., 0.);
143 greg 2.9 r->gecc = 0.;
144     }
145 greg 1.1 }
146    
147     d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
148    
149     if (d2 < FTINY) /* total reflection */
150    
151     refl = 1.0;
152    
153     else { /* refraction occurs */
154     /* compute Fresnel's equations */
155     cos2 = sqrt(d2);
156     d1 = cos1;
157     d2 = nratio*cos2;
158     d1 = (d1 - d2) / (d1 + d2);
159     refl = d1 * d1;
160    
161     d1 = 1.0 / cos1;
162     d2 = nratio / cos2;
163     d1 = (d1 - d2) / (d1 + d2);
164     refl += d1 * d1;
165    
166 greg 2.9 refl *= 0.5;
167 greg 1.1 trans = 1.0 - refl;
168 greg 2.15
169     trans *= nratio*nratio; /* solid angle ratio */
170 greg 1.1
171 greg 2.31 setscolor(p.rcoef, trans, trans, trans);
172 greg 2.20
173     if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) {
174 greg 1.1
175     /* compute refracted ray */
176     d1 = nratio*cos1 - cos2;
177     for (i = 0; i < 3; i++)
178     p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
179 gwlarson 2.14 /* accidental reflection? */
180     if (hastexture &&
181     DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
182     d1 *= (double)hastexture;
183     for (i = 0; i < 3; i++) /* ignore texture */
184     p.rdir[i] = nratio*r->rdir[i] +
185     d1*r->ron[i];
186     normalize(p.rdir); /* not exact */
187 greg 2.21 } else
188     checknorm(p.rdir);
189 greg 1.1 #ifdef DISPERSE
190     if (m->otype != MAT_DIELECTRIC
191     || r->rod > 0.0
192     || r->crtype & SHADOW
193 greg 2.3 || !directvis
194 greg 1.1 || m->oargs.farg[4] == 0.0
195 greg 2.12 || !disperse(m, r, p.rdir,
196     trans, ctrans, talb))
197 greg 1.1 #endif
198     {
199 greg 2.9 copycolor(p.cext, ctrans);
200 greg 2.11 copycolor(p.albedo, talb);
201 greg 1.1 rayvalue(&p);
202 greg 2.31 smultscolor(p.rcol, p.rcoef);
203     saddscolor(r->rcol, p.rcol);
204 greg 2.19 /* virtual distance */
205     if (flatsurface ||
206 greg 2.24 (1.-FTINY <= nratio) &
207 greg 2.29 (nratio <= 1.+FTINY))
208     r->rxt = r->rot + raydistance(&p);
209 greg 1.1 }
210     }
211     }
212 greg 2.31 setscolor(p.rcoef, refl, refl, refl);
213 greg 2.20
214 greg 1.1 if (!(r->crtype & SHADOW) &&
215 greg 2.20 rayorigin(&p, REFLECTED, r, p.rcoef) == 0) {
216 greg 1.1
217     /* compute reflected ray */
218 greg 2.22 VSUM(p.rdir, r->rdir, dnorm, 2.*cos1);
219 gwlarson 2.14 /* accidental penetration? */
220     if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
221 greg 2.22 VSUM(p.rdir, r->rdir, r->ron, 2.*r->rod);
222 greg 2.21 checknorm(p.rdir);
223 greg 1.1 rayvalue(&p); /* reflected ray value */
224    
225 greg 2.31 smultscolor(p.rcol, p.rcoef); /* color contribution */
226     copyscolor(r->mcol, p.rcol);
227     saddscolor(r->rcol, p.rcol);
228 greg 2.19 /* virtual distance */
229 greg 2.30 r->rmt = r->rot;
230 greg 2.29 if (flatsurface)
231 greg 2.30 r->rmt += raydistance(&p);
232 greg 1.1 }
233 greg 2.9 /* rayvalue() computes absorption */
234 greg 2.7 return(1);
235 greg 1.1 }
236    
237    
238     #ifdef DISPERSE
239    
240 schorsch 2.18 static int
241     disperse( /* check light sources for dispersion */
242     OBJREC *m,
243     RAY *r,
244     FVECT vt,
245     double tr,
246     COLOR cet,
247     COLOR abt
248     )
249 greg 1.1 {
250 greg 2.20 RAY sray;
251     const RAY *entray;
252 greg 1.1 FVECT v1, v2, n1, n2;
253     FVECT dv, v2Xdv;
254     double v2Xdvv2Xdv;
255 greg 1.7 int success = 0;
256     SRCINDEX si;
257 greg 1.1 FVECT vtmp1, vtmp2;
258     double dtmp1, dtmp2;
259     int l1, l2;
260     COLOR ctmp;
261     int i;
262    
263     /*
264     * This routine computes dispersion to the first order using
265     * the following assumptions:
266     *
267     * 1) The dependency of the index of refraction on wavelength
268     * is approximated by Hartmann's equation with lambda0
269     * equal to zero.
270     * 2) The entry and exit locations are constant with respect
271     * to dispersion.
272     *
273     * The second assumption permits us to model dispersion without
274     * having to sample refracted directions. We assume that the
275     * geometry inside the material is constant, and concern ourselves
276     * only with the relationship between the entering and exiting ray.
277     * We compute the first derivatives of the entering and exiting
278     * refraction with respect to the index of refraction. This
279     * is then used in a first order Taylor series to determine the
280     * index of refraction necessary to send the exiting ray to each
281     * light source.
282     * If an exiting ray hits a light source within the refraction
283     * boundaries, we sum all the frequencies over the disc of the
284     * light source to determine the resulting color. A smaller light
285     * source will therefore exhibit a sharper spectrum.
286     */
287    
288     if (!(r->crtype & REFRACTED)) { /* ray started in material */
289     VCOPY(v1, r->rdir);
290     n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
291     } else {
292     /* find entry point */
293     for (entray = r; entray->rtype != REFRACTED;
294     entray = entray->parent)
295     ;
296     entray = entray->parent;
297     if (entray->crtype & REFRACTED) /* too difficult */
298     return(0);
299     VCOPY(v1, entray->rdir);
300     VCOPY(n1, entray->ron);
301     }
302     VCOPY(v2, vt); /* exiting ray */
303     VCOPY(n2, r->ron);
304    
305     /* first order dispersion approx. */
306 greg 2.22 dtmp1 = 1./DOT(n1, v1);
307     dtmp2 = 1./DOT(n2, v2);
308 greg 1.1 for (i = 0; i < 3; i++)
309 greg 2.22 dv[i] = v1[i] + v2[i] - n1[i]*dtmp1 - n2[i]*dtmp2;
310 greg 1.1
311     if (DOT(dv, dv) <= FTINY) /* null effect */
312     return(0);
313     /* compute plane normal */
314     fcross(v2Xdv, v2, dv);
315     v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
316    
317     /* check sources */
318 greg 1.7 initsrcindex(&si);
319     while (srcray(&sray, r, &si)) {
320 greg 1.1
321 greg 1.7 if (DOT(sray.rdir, v2) < MINCOS)
322 greg 1.1 continue; /* bad source */
323     /* adjust source ray */
324    
325     dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
326     sray.rdir[0] -= dtmp1 * v2Xdv[0];
327     sray.rdir[1] -= dtmp1 * v2Xdv[1];
328     sray.rdir[2] -= dtmp1 * v2Xdv[2];
329    
330     l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
331    
332     if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
333     continue;
334     /* trace source ray */
335 greg 2.12 copycolor(sray.cext, cet);
336     copycolor(sray.albedo, abt);
337 greg 1.1 normalize(sray.rdir);
338     rayvalue(&sray);
339 greg 2.32 if (pbright(sray.rcol) <= FTINY) /* missed it */
340 greg 1.1 continue;
341    
342     /*
343     * Compute spectral sum over diameter of source.
344     * First find directions for rays going to opposite
345     * sides of source, then compute wavelengths for each.
346     */
347    
348     fcross(vtmp1, v2Xdv, sray.rdir);
349 greg 1.7 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
350 greg 1.1
351     /* compute first ray */
352 greg 2.22 VSUM(vtmp2, sray.rdir, vtmp1, dtmp1);
353 greg 1.1
354     l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
355     if (l1 < 0)
356     continue;
357     /* compute second ray */
358 greg 2.22 VSUM(vtmp2, sray.rdir, vtmp1, -dtmp1);
359 greg 1.1
360     l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
361     if (l2 < 0)
362     continue;
363     /* compute color from spectrum */
364 greg 2.31 if (l1 < l2) /* XXX should use direct spectral xfer */
365 greg 1.1 spec_rgb(ctmp, l1, l2);
366     else
367     spec_rgb(ctmp, l2, l1);
368 greg 2.31 multscolor(ctmp, sray.rcol);
369 greg 1.1 scalecolor(ctmp, tr);
370 greg 2.31 saddcolor(r->rcol, ctmp);
371 greg 1.1 success++;
372     }
373     return(success);
374     }
375    
376    
377     static int
378 schorsch 2.18 lambda( /* compute lambda for material */
379 greg 2.24 OBJREC *m,
380 schorsch 2.18 FVECT v2,
381     FVECT dv,
382     FVECT lr
383     )
384 greg 1.1 {
385     FVECT lrXdv, v2Xlr;
386     double dtmp, denom;
387     int i;
388    
389     fcross(lrXdv, lr, dv);
390     for (i = 0; i < 3; i++)
391 greg 2.22 if ((lrXdv[i] > FTINY) | (lrXdv[i] < -FTINY))
392 greg 1.1 break;
393     if (i >= 3)
394     return(-1);
395    
396     fcross(v2Xlr, v2, lr);
397    
398     dtmp = m->oargs.farg[4] / MLAMBDA;
399     denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
400    
401     if (denom < FTINY)
402     return(-1);
403    
404     return(m->oargs.farg[4] / denom);
405     }
406    
407     #endif /* DISPERSE */