ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.3
Committed: Thu Nov 19 20:30:02 1992 UTC (31 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.2: +1 -1 lines
Log Message:
changed directinvis to !directvis

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1986 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * dielectric.c - shading function for transparent materials.
9     *
10     * 9/6/85
11     */
12    
13     #include "ray.h"
14    
15     #include "otypes.h"
16    
17     #ifdef DISPERSE
18     #include "source.h"
19     #endif
20    
21     /*
22     * Explicit calculations for Fresnel's equation are performed,
23     * but only one square root computation is necessary.
24     * The index of refraction is given as a Hartmann equation
25     * with lambda0 equal to zero. If the slope of Hartmann's
26     * equation is non-zero, the material disperses light upon
27     * refraction. This condition is examined on rays traced to
28     * light sources. If a ray is exiting a dielectric material, we
29     * check the sources to see if any would cause bright color to be
30     * directed to the viewer due to dispersion. This gives colorful
31     * sparkle to crystals, etc. (Only if DISPERSE is defined!)
32     *
33     * Arguments for MAT_DIELECTRIC are:
34     * red grn blu rndx Hartmann
35     *
36     * Arguments for MAT_INTERFACE are:
37     * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
38     *
39     * The primaries are material transmission per unit length.
40     * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
41     * outside.
42     */
43    
44    
45     #define MLAMBDA 500 /* mean lambda */
46     #define MAXLAMBDA 779 /* maximum lambda */
47     #define MINLAMBDA 380 /* minimum lambda */
48    
49     #define MINCOS 0.997 /* minimum dot product for dispersion */
50    
51    
52     m_dielectric(m, r) /* color a ray which hit something transparent */
53     OBJREC *m;
54     register RAY *r;
55     {
56     double cos1, cos2, nratio;
57     COLOR mcolor;
58     double mabsorp;
59 greg 1.5 double refl, trans;
60 greg 1.1 FVECT dnorm;
61     double d1, d2;
62     RAY p;
63     register int i;
64    
65     if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
66     objerror(m, USER, "bad arguments");
67    
68 greg 1.5 r->rt = r->rot; /* just use ray length */
69    
70 greg 1.1 raytexture(r, m->omod); /* get modifiers */
71    
72     cos1 = raynormal(dnorm, r); /* cosine of theta1 */
73     /* index of refraction */
74     if (m->otype == MAT_DIELECTRIC)
75     nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
76     else
77     nratio = m->oargs.farg[3] / m->oargs.farg[7];
78    
79     if (cos1 < 0.0) { /* inside */
80     cos1 = -cos1;
81     dnorm[0] = -dnorm[0];
82     dnorm[1] = -dnorm[1];
83     dnorm[2] = -dnorm[2];
84     setcolor(mcolor, pow(m->oargs.farg[0], r->rot),
85     pow(m->oargs.farg[1], r->rot),
86     pow(m->oargs.farg[2], r->rot));
87     } else { /* outside */
88     nratio = 1.0 / nratio;
89     if (m->otype == MAT_INTERFACE)
90     setcolor(mcolor, pow(m->oargs.farg[4], r->rot),
91     pow(m->oargs.farg[5], r->rot),
92     pow(m->oargs.farg[6], r->rot));
93     else
94     setcolor(mcolor, 1.0, 1.0, 1.0);
95     }
96 greg 1.2 mabsorp = bright(mcolor);
97 greg 1.1
98     d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
99    
100     if (d2 < FTINY) /* total reflection */
101    
102     refl = 1.0;
103    
104     else { /* refraction occurs */
105     /* compute Fresnel's equations */
106     cos2 = sqrt(d2);
107     d1 = cos1;
108     d2 = nratio*cos2;
109     d1 = (d1 - d2) / (d1 + d2);
110     refl = d1 * d1;
111    
112     d1 = 1.0 / cos1;
113     d2 = nratio / cos2;
114     d1 = (d1 - d2) / (d1 + d2);
115     refl += d1 * d1;
116    
117     refl /= 2.0;
118     trans = 1.0 - refl;
119    
120     if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
121    
122     /* compute refracted ray */
123     d1 = nratio*cos1 - cos2;
124     for (i = 0; i < 3; i++)
125     p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
126    
127     #ifdef DISPERSE
128     if (m->otype != MAT_DIELECTRIC
129     || r->rod > 0.0
130     || r->crtype & SHADOW
131 greg 2.3 || !directvis
132 greg 1.1 || m->oargs.farg[4] == 0.0
133     || !disperse(m, r, p.rdir, trans))
134     #endif
135     {
136     rayvalue(&p);
137     multcolor(mcolor, r->pcol); /* modify */
138     scalecolor(p.rcol, trans);
139     addcolor(r->rcol, p.rcol);
140     }
141     }
142     }
143    
144     if (!(r->crtype & SHADOW) &&
145     rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
146    
147     /* compute reflected ray */
148     for (i = 0; i < 3; i++)
149     p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
150    
151     rayvalue(&p); /* reflected ray value */
152    
153     scalecolor(p.rcol, refl); /* color contribution */
154     addcolor(r->rcol, p.rcol);
155     }
156    
157     multcolor(r->rcol, mcolor); /* multiply by transmittance */
158     }
159    
160    
161     #ifdef DISPERSE
162    
163     static
164     disperse(m, r, vt, tr) /* check light sources for dispersion */
165     OBJREC *m;
166     RAY *r;
167     FVECT vt;
168     double tr;
169     {
170     RAY sray, *entray;
171     FVECT v1, v2, n1, n2;
172     FVECT dv, v2Xdv;
173     double v2Xdvv2Xdv;
174 greg 1.7 int success = 0;
175     SRCINDEX si;
176 greg 1.1 FVECT vtmp1, vtmp2;
177     double dtmp1, dtmp2;
178     int l1, l2;
179     COLOR ctmp;
180     int i;
181    
182     /*
183     * This routine computes dispersion to the first order using
184     * the following assumptions:
185     *
186     * 1) The dependency of the index of refraction on wavelength
187     * is approximated by Hartmann's equation with lambda0
188     * equal to zero.
189     * 2) The entry and exit locations are constant with respect
190     * to dispersion.
191     *
192     * The second assumption permits us to model dispersion without
193     * having to sample refracted directions. We assume that the
194     * geometry inside the material is constant, and concern ourselves
195     * only with the relationship between the entering and exiting ray.
196     * We compute the first derivatives of the entering and exiting
197     * refraction with respect to the index of refraction. This
198     * is then used in a first order Taylor series to determine the
199     * index of refraction necessary to send the exiting ray to each
200     * light source.
201     * If an exiting ray hits a light source within the refraction
202     * boundaries, we sum all the frequencies over the disc of the
203     * light source to determine the resulting color. A smaller light
204     * source will therefore exhibit a sharper spectrum.
205     */
206    
207     if (!(r->crtype & REFRACTED)) { /* ray started in material */
208     VCOPY(v1, r->rdir);
209     n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
210     } else {
211     /* find entry point */
212     for (entray = r; entray->rtype != REFRACTED;
213     entray = entray->parent)
214     ;
215     entray = entray->parent;
216     if (entray->crtype & REFRACTED) /* too difficult */
217     return(0);
218     VCOPY(v1, entray->rdir);
219     VCOPY(n1, entray->ron);
220     }
221     VCOPY(v2, vt); /* exiting ray */
222     VCOPY(n2, r->ron);
223    
224     /* first order dispersion approx. */
225     dtmp1 = DOT(n1, v1);
226     dtmp2 = DOT(n2, v2);
227     for (i = 0; i < 3; i++)
228     dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
229    
230     if (DOT(dv, dv) <= FTINY) /* null effect */
231     return(0);
232     /* compute plane normal */
233     fcross(v2Xdv, v2, dv);
234     v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
235    
236     /* check sources */
237 greg 1.7 initsrcindex(&si);
238     while (srcray(&sray, r, &si)) {
239 greg 1.1
240 greg 1.7 if (DOT(sray.rdir, v2) < MINCOS)
241 greg 1.1 continue; /* bad source */
242     /* adjust source ray */
243    
244     dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
245     sray.rdir[0] -= dtmp1 * v2Xdv[0];
246     sray.rdir[1] -= dtmp1 * v2Xdv[1];
247     sray.rdir[2] -= dtmp1 * v2Xdv[2];
248    
249     l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
250    
251     if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
252     continue;
253     /* trace source ray */
254     normalize(sray.rdir);
255     rayvalue(&sray);
256 greg 1.2 if (bright(sray.rcol) <= FTINY) /* missed it */
257 greg 1.1 continue;
258    
259     /*
260     * Compute spectral sum over diameter of source.
261     * First find directions for rays going to opposite
262     * sides of source, then compute wavelengths for each.
263     */
264    
265     fcross(vtmp1, v2Xdv, sray.rdir);
266 greg 1.7 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
267 greg 1.1
268     /* compute first ray */
269     for (i = 0; i < 3; i++)
270     vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
271    
272     l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
273     if (l1 < 0)
274     continue;
275     /* compute second ray */
276     for (i = 0; i < 3; i++)
277     vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
278    
279     l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
280     if (l2 < 0)
281     continue;
282     /* compute color from spectrum */
283     if (l1 < l2)
284     spec_rgb(ctmp, l1, l2);
285     else
286     spec_rgb(ctmp, l2, l1);
287     multcolor(ctmp, sray.rcol);
288     scalecolor(ctmp, tr);
289     addcolor(r->rcol, ctmp);
290     success++;
291     }
292     return(success);
293     }
294    
295    
296     static int
297     lambda(m, v2, dv, lr) /* compute lambda for material */
298     register OBJREC *m;
299     FVECT v2, dv, lr;
300     {
301     FVECT lrXdv, v2Xlr;
302     double dtmp, denom;
303     int i;
304    
305     fcross(lrXdv, lr, dv);
306     for (i = 0; i < 3; i++)
307     if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
308     break;
309     if (i >= 3)
310     return(-1);
311    
312     fcross(v2Xlr, v2, lr);
313    
314     dtmp = m->oargs.farg[4] / MLAMBDA;
315     denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
316    
317     if (denom < FTINY)
318     return(-1);
319    
320     return(m->oargs.farg[4] / denom);
321     }
322    
323     #endif /* DISPERSE */