ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.21
Committed: Sun Sep 26 15:51:15 2010 UTC (13 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.20: +4 -3 lines
Log Message:
Added checknorm() macro to avoid normalization errors with gcc --fast-math

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.21 static const char RCSid[] = "$Id: dielectric.c,v 2.20 2005/04/19 01:15:06 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * dielectric.c - shading function for transparent materials.
6 greg 2.15 */
7    
8 greg 2.16 #include "copyright.h"
9 greg 1.1
10     #include "ray.h"
11     #include "otypes.h"
12 schorsch 2.18 #include "rtotypes.h"
13 greg 1.1
14     #ifdef DISPERSE
15     #include "source.h"
16 schorsch 2.18 static int disperse(OBJREC *m,RAY *r,FVECT vt,double tr,COLOR cet,COLOR abt);
17     static int lambda(OBJREC *m, FVECT v2, FVECT dv, FVECT lr);
18 greg 1.1 #endif
19    
20 schorsch 2.18 static double mylog(double x);
21    
22    
23 greg 1.1 /*
24     * Explicit calculations for Fresnel's equation are performed,
25     * but only one square root computation is necessary.
26     * The index of refraction is given as a Hartmann equation
27     * with lambda0 equal to zero. If the slope of Hartmann's
28     * equation is non-zero, the material disperses light upon
29     * refraction. This condition is examined on rays traced to
30     * light sources. If a ray is exiting a dielectric material, we
31     * check the sources to see if any would cause bright color to be
32     * directed to the viewer due to dispersion. This gives colorful
33     * sparkle to crystals, etc. (Only if DISPERSE is defined!)
34     *
35     * Arguments for MAT_DIELECTRIC are:
36     * red grn blu rndx Hartmann
37     *
38     * Arguments for MAT_INTERFACE are:
39     * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
40     *
41     * The primaries are material transmission per unit length.
42     * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
43     * outside.
44     */
45    
46    
47     #define MLAMBDA 500 /* mean lambda */
48     #define MAXLAMBDA 779 /* maximum lambda */
49     #define MINLAMBDA 380 /* minimum lambda */
50    
51     #define MINCOS 0.997 /* minimum dot product for dispersion */
52    
53 greg 2.9
54 greg 2.10 static double
55 schorsch 2.18 mylog( /* special log for extinction coefficients */
56     double x
57     )
58 greg 2.10 {
59     if (x < 1e-40)
60     return(-100.);
61     if (x >= 1.)
62     return(0.);
63     return(log(x));
64     }
65    
66    
67 schorsch 2.18 extern int
68     m_dielectric( /* color a ray which hit a dielectric interface */
69     OBJREC *m,
70     register RAY *r
71     )
72 greg 1.1 {
73     double cos1, cos2, nratio;
74 greg 2.9 COLOR ctrans;
75 greg 2.11 COLOR talb;
76 gwlarson 2.14 int hastexture;
77 greg 2.19 double transdist, transtest=0;
78     double mirdist, mirtest=0;
79     int flatsurface;
80 greg 1.5 double refl, trans;
81 greg 1.1 FVECT dnorm;
82     double d1, d2;
83     RAY p;
84     register int i;
85    
86     if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
87     objerror(m, USER, "bad arguments");
88    
89     raytexture(r, m->omod); /* get modifiers */
90    
91 schorsch 2.17 if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
92 gwlarson 2.14 cos1 = raynormal(dnorm, r); /* perturb normal */
93     else {
94     VCOPY(dnorm, r->ron);
95     cos1 = r->rod;
96     }
97 greg 2.19 flatsurface = !hastexture && r->ro != NULL && isflat(r->ro->otype);
98    
99 greg 1.1 /* index of refraction */
100     if (m->otype == MAT_DIELECTRIC)
101     nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
102     else
103     nratio = m->oargs.farg[3] / m->oargs.farg[7];
104    
105     if (cos1 < 0.0) { /* inside */
106 gwlarson 2.14 hastexture = -hastexture;
107 greg 1.1 cos1 = -cos1;
108     dnorm[0] = -dnorm[0];
109     dnorm[1] = -dnorm[1];
110     dnorm[2] = -dnorm[2];
111 greg 2.10 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
112     -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
113     -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
114 greg 2.11 setcolor(r->albedo, 0., 0., 0.);
115 greg 2.9 r->gecc = 0.;
116     if (m->otype == MAT_INTERFACE) {
117     setcolor(ctrans,
118 greg 2.10 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
119     -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
120     -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
121 greg 2.11 setcolor(talb, 0., 0., 0.);
122 greg 2.9 } else {
123     copycolor(ctrans, cextinction);
124 greg 2.11 copycolor(talb, salbedo);
125 greg 2.9 }
126 greg 1.1 } else { /* outside */
127     nratio = 1.0 / nratio;
128 greg 2.9
129 greg 2.10 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
130     -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
131     -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
132 greg 2.11 setcolor(talb, 0., 0., 0.);
133 greg 2.9 if (m->otype == MAT_INTERFACE) {
134     setcolor(r->cext,
135 greg 2.10 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
136     -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
137     -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
138 greg 2.11 setcolor(r->albedo, 0., 0., 0.);
139 greg 2.9 r->gecc = 0.;
140     }
141 greg 1.1 }
142    
143     d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
144    
145     if (d2 < FTINY) /* total reflection */
146    
147     refl = 1.0;
148    
149     else { /* refraction occurs */
150     /* compute Fresnel's equations */
151     cos2 = sqrt(d2);
152     d1 = cos1;
153     d2 = nratio*cos2;
154     d1 = (d1 - d2) / (d1 + d2);
155     refl = d1 * d1;
156    
157     d1 = 1.0 / cos1;
158     d2 = nratio / cos2;
159     d1 = (d1 - d2) / (d1 + d2);
160     refl += d1 * d1;
161    
162 greg 2.9 refl *= 0.5;
163 greg 1.1 trans = 1.0 - refl;
164 greg 2.15
165     trans *= nratio*nratio; /* solid angle ratio */
166 greg 1.1
167 greg 2.20 setcolor(p.rcoef, trans, trans, trans);
168    
169     if (rayorigin(&p, REFRACTED, r, p.rcoef) == 0) {
170 greg 1.1
171     /* compute refracted ray */
172     d1 = nratio*cos1 - cos2;
173     for (i = 0; i < 3; i++)
174     p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
175 gwlarson 2.14 /* accidental reflection? */
176     if (hastexture &&
177     DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
178     d1 *= (double)hastexture;
179     for (i = 0; i < 3; i++) /* ignore texture */
180     p.rdir[i] = nratio*r->rdir[i] +
181     d1*r->ron[i];
182     normalize(p.rdir); /* not exact */
183 greg 2.21 } else
184     checknorm(p.rdir);
185 greg 1.1 #ifdef DISPERSE
186     if (m->otype != MAT_DIELECTRIC
187     || r->rod > 0.0
188     || r->crtype & SHADOW
189 greg 2.3 || !directvis
190 greg 1.1 || m->oargs.farg[4] == 0.0
191 greg 2.12 || !disperse(m, r, p.rdir,
192     trans, ctrans, talb))
193 greg 1.1 #endif
194     {
195 greg 2.9 copycolor(p.cext, ctrans);
196 greg 2.11 copycolor(p.albedo, talb);
197 greg 1.1 rayvalue(&p);
198 greg 2.20 multcolor(p.rcol, p.rcoef);
199 greg 1.1 addcolor(r->rcol, p.rcol);
200 greg 2.19 /* virtual distance */
201     if (flatsurface ||
202     (1.-FTINY <= nratio &&
203     nratio <= 1.+FTINY)) {
204     transtest = 2*bright(p.rcol);
205     transdist = r->rot + p.rt;
206     }
207 greg 1.1 }
208     }
209     }
210 greg 2.20 setcolor(p.rcoef, refl, refl, refl);
211    
212 greg 1.1 if (!(r->crtype & SHADOW) &&
213 greg 2.20 rayorigin(&p, REFLECTED, r, p.rcoef) == 0) {
214 greg 1.1
215     /* compute reflected ray */
216     for (i = 0; i < 3; i++)
217     p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
218 gwlarson 2.14 /* accidental penetration? */
219     if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
220     for (i = 0; i < 3; i++) /* ignore texture */
221     p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i];
222 greg 2.21 checknorm(p.rdir);
223 greg 1.1 rayvalue(&p); /* reflected ray value */
224    
225 greg 2.20 multcolor(p.rcol, p.rcoef); /* color contribution */
226 greg 1.1 addcolor(r->rcol, p.rcol);
227 greg 2.19 /* virtual distance */
228     if (flatsurface) {
229     mirtest = 2*bright(p.rcol);
230     mirdist = r->rot + p.rt;
231     }
232 greg 1.1 }
233 greg 2.19 /* check distance to return */
234     d1 = bright(r->rcol);
235     if (transtest > d1)
236     r->rt = transdist;
237     else if (mirtest > d1)
238     r->rt = mirdist;
239 greg 2.9 /* rayvalue() computes absorption */
240 greg 2.7 return(1);
241 greg 1.1 }
242    
243    
244     #ifdef DISPERSE
245    
246 schorsch 2.18 static int
247     disperse( /* check light sources for dispersion */
248     OBJREC *m,
249     RAY *r,
250     FVECT vt,
251     double tr,
252     COLOR cet,
253     COLOR abt
254     )
255 greg 1.1 {
256 greg 2.20 RAY sray;
257     const RAY *entray;
258 greg 1.1 FVECT v1, v2, n1, n2;
259     FVECT dv, v2Xdv;
260     double v2Xdvv2Xdv;
261 greg 1.7 int success = 0;
262     SRCINDEX si;
263 greg 1.1 FVECT vtmp1, vtmp2;
264     double dtmp1, dtmp2;
265     int l1, l2;
266     COLOR ctmp;
267     int i;
268    
269     /*
270     * This routine computes dispersion to the first order using
271     * the following assumptions:
272     *
273     * 1) The dependency of the index of refraction on wavelength
274     * is approximated by Hartmann's equation with lambda0
275     * equal to zero.
276     * 2) The entry and exit locations are constant with respect
277     * to dispersion.
278     *
279     * The second assumption permits us to model dispersion without
280     * having to sample refracted directions. We assume that the
281     * geometry inside the material is constant, and concern ourselves
282     * only with the relationship between the entering and exiting ray.
283     * We compute the first derivatives of the entering and exiting
284     * refraction with respect to the index of refraction. This
285     * is then used in a first order Taylor series to determine the
286     * index of refraction necessary to send the exiting ray to each
287     * light source.
288     * If an exiting ray hits a light source within the refraction
289     * boundaries, we sum all the frequencies over the disc of the
290     * light source to determine the resulting color. A smaller light
291     * source will therefore exhibit a sharper spectrum.
292     */
293    
294     if (!(r->crtype & REFRACTED)) { /* ray started in material */
295     VCOPY(v1, r->rdir);
296     n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
297     } else {
298     /* find entry point */
299     for (entray = r; entray->rtype != REFRACTED;
300     entray = entray->parent)
301     ;
302     entray = entray->parent;
303     if (entray->crtype & REFRACTED) /* too difficult */
304     return(0);
305     VCOPY(v1, entray->rdir);
306     VCOPY(n1, entray->ron);
307     }
308     VCOPY(v2, vt); /* exiting ray */
309     VCOPY(n2, r->ron);
310    
311     /* first order dispersion approx. */
312     dtmp1 = DOT(n1, v1);
313     dtmp2 = DOT(n2, v2);
314     for (i = 0; i < 3; i++)
315     dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
316    
317     if (DOT(dv, dv) <= FTINY) /* null effect */
318     return(0);
319     /* compute plane normal */
320     fcross(v2Xdv, v2, dv);
321     v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
322    
323     /* check sources */
324 greg 1.7 initsrcindex(&si);
325     while (srcray(&sray, r, &si)) {
326 greg 1.1
327 greg 1.7 if (DOT(sray.rdir, v2) < MINCOS)
328 greg 1.1 continue; /* bad source */
329     /* adjust source ray */
330    
331     dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
332     sray.rdir[0] -= dtmp1 * v2Xdv[0];
333     sray.rdir[1] -= dtmp1 * v2Xdv[1];
334     sray.rdir[2] -= dtmp1 * v2Xdv[2];
335    
336     l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
337    
338     if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
339     continue;
340     /* trace source ray */
341 greg 2.12 copycolor(sray.cext, cet);
342     copycolor(sray.albedo, abt);
343 greg 1.1 normalize(sray.rdir);
344     rayvalue(&sray);
345 greg 1.2 if (bright(sray.rcol) <= FTINY) /* missed it */
346 greg 1.1 continue;
347    
348     /*
349     * Compute spectral sum over diameter of source.
350     * First find directions for rays going to opposite
351     * sides of source, then compute wavelengths for each.
352     */
353    
354     fcross(vtmp1, v2Xdv, sray.rdir);
355 greg 1.7 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
356 greg 1.1
357     /* compute first ray */
358     for (i = 0; i < 3; i++)
359     vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
360    
361     l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
362     if (l1 < 0)
363     continue;
364     /* compute second ray */
365     for (i = 0; i < 3; i++)
366     vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
367    
368     l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
369     if (l2 < 0)
370     continue;
371     /* compute color from spectrum */
372     if (l1 < l2)
373     spec_rgb(ctmp, l1, l2);
374     else
375     spec_rgb(ctmp, l2, l1);
376     multcolor(ctmp, sray.rcol);
377     scalecolor(ctmp, tr);
378     addcolor(r->rcol, ctmp);
379     success++;
380     }
381     return(success);
382     }
383    
384    
385     static int
386 schorsch 2.18 lambda( /* compute lambda for material */
387     register OBJREC *m,
388     FVECT v2,
389     FVECT dv,
390     FVECT lr
391     )
392 greg 1.1 {
393     FVECT lrXdv, v2Xlr;
394     double dtmp, denom;
395     int i;
396    
397     fcross(lrXdv, lr, dv);
398     for (i = 0; i < 3; i++)
399     if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
400     break;
401     if (i >= 3)
402     return(-1);
403    
404     fcross(v2Xlr, v2, lr);
405    
406     dtmp = m->oargs.farg[4] / MLAMBDA;
407     denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
408    
409     if (denom < FTINY)
410     return(-1);
411    
412     return(m->oargs.farg[4] / denom);
413     }
414    
415     #endif /* DISPERSE */