ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 2.17
Committed: Sun Jul 27 22:12:03 2003 UTC (20 years, 9 months ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.16: +2 -2 lines
Log Message:
Added grouping parens to reduce ambiguity warnings.

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 schorsch 2.17 static const char RCSid[] = "$Id: dielectric.c,v 2.16 2003/02/25 02:47:22 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * dielectric.c - shading function for transparent materials.
6 greg 2.15 */
7    
8 greg 2.16 #include "copyright.h"
9 greg 1.1
10     #include "ray.h"
11    
12     #include "otypes.h"
13    
14     #ifdef DISPERSE
15     #include "source.h"
16 greg 2.5 static disperse();
17 greg 2.6 static int lambda();
18 greg 1.1 #endif
19    
20     /*
21     * Explicit calculations for Fresnel's equation are performed,
22     * but only one square root computation is necessary.
23     * The index of refraction is given as a Hartmann equation
24     * with lambda0 equal to zero. If the slope of Hartmann's
25     * equation is non-zero, the material disperses light upon
26     * refraction. This condition is examined on rays traced to
27     * light sources. If a ray is exiting a dielectric material, we
28     * check the sources to see if any would cause bright color to be
29     * directed to the viewer due to dispersion. This gives colorful
30     * sparkle to crystals, etc. (Only if DISPERSE is defined!)
31     *
32     * Arguments for MAT_DIELECTRIC are:
33     * red grn blu rndx Hartmann
34     *
35     * Arguments for MAT_INTERFACE are:
36     * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
37     *
38     * The primaries are material transmission per unit length.
39     * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
40     * outside.
41     */
42    
43    
44     #define MLAMBDA 500 /* mean lambda */
45     #define MAXLAMBDA 779 /* maximum lambda */
46     #define MINLAMBDA 380 /* minimum lambda */
47    
48     #define MINCOS 0.997 /* minimum dot product for dispersion */
49    
50 greg 2.9
51 greg 2.10 static double
52     mylog(x) /* special log for extinction coefficients */
53     double x;
54     {
55     if (x < 1e-40)
56     return(-100.);
57     if (x >= 1.)
58     return(0.);
59     return(log(x));
60     }
61    
62    
63 greg 2.9 m_dielectric(m, r) /* color a ray which hit a dielectric interface */
64 greg 1.1 OBJREC *m;
65     register RAY *r;
66     {
67     double cos1, cos2, nratio;
68 greg 2.9 COLOR ctrans;
69 greg 2.11 COLOR talb;
70 gwlarson 2.14 int hastexture;
71 greg 1.5 double refl, trans;
72 greg 1.1 FVECT dnorm;
73     double d1, d2;
74     RAY p;
75     register int i;
76    
77     if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
78     objerror(m, USER, "bad arguments");
79    
80     raytexture(r, m->omod); /* get modifiers */
81    
82 schorsch 2.17 if ( (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY) )
83 gwlarson 2.14 cos1 = raynormal(dnorm, r); /* perturb normal */
84     else {
85     VCOPY(dnorm, r->ron);
86     cos1 = r->rod;
87     }
88 greg 1.1 /* index of refraction */
89     if (m->otype == MAT_DIELECTRIC)
90     nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
91     else
92     nratio = m->oargs.farg[3] / m->oargs.farg[7];
93    
94     if (cos1 < 0.0) { /* inside */
95 gwlarson 2.14 hastexture = -hastexture;
96 greg 1.1 cos1 = -cos1;
97     dnorm[0] = -dnorm[0];
98     dnorm[1] = -dnorm[1];
99     dnorm[2] = -dnorm[2];
100 greg 2.10 setcolor(r->cext, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
101     -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
102     -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
103 greg 2.11 setcolor(r->albedo, 0., 0., 0.);
104 greg 2.9 r->gecc = 0.;
105     if (m->otype == MAT_INTERFACE) {
106     setcolor(ctrans,
107 greg 2.10 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
108     -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
109     -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
110 greg 2.11 setcolor(talb, 0., 0., 0.);
111 greg 2.9 } else {
112     copycolor(ctrans, cextinction);
113 greg 2.11 copycolor(talb, salbedo);
114 greg 2.9 }
115 greg 1.1 } else { /* outside */
116     nratio = 1.0 / nratio;
117 greg 2.9
118 greg 2.10 setcolor(ctrans, -mylog(m->oargs.farg[0]*colval(r->pcol,RED)),
119     -mylog(m->oargs.farg[1]*colval(r->pcol,GRN)),
120     -mylog(m->oargs.farg[2]*colval(r->pcol,BLU)));
121 greg 2.11 setcolor(talb, 0., 0., 0.);
122 greg 2.9 if (m->otype == MAT_INTERFACE) {
123     setcolor(r->cext,
124 greg 2.10 -mylog(m->oargs.farg[4]*colval(r->pcol,RED)),
125     -mylog(m->oargs.farg[5]*colval(r->pcol,GRN)),
126     -mylog(m->oargs.farg[6]*colval(r->pcol,BLU)));
127 greg 2.11 setcolor(r->albedo, 0., 0., 0.);
128 greg 2.9 r->gecc = 0.;
129     }
130 greg 1.1 }
131    
132     d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
133    
134     if (d2 < FTINY) /* total reflection */
135    
136     refl = 1.0;
137    
138     else { /* refraction occurs */
139     /* compute Fresnel's equations */
140     cos2 = sqrt(d2);
141     d1 = cos1;
142     d2 = nratio*cos2;
143     d1 = (d1 - d2) / (d1 + d2);
144     refl = d1 * d1;
145    
146     d1 = 1.0 / cos1;
147     d2 = nratio / cos2;
148     d1 = (d1 - d2) / (d1 + d2);
149     refl += d1 * d1;
150    
151 greg 2.9 refl *= 0.5;
152 greg 1.1 trans = 1.0 - refl;
153 greg 2.15
154     trans *= nratio*nratio; /* solid angle ratio */
155 greg 1.1
156 gwlarson 2.13 if (rayorigin(&p, r, REFRACTED, trans) == 0) {
157 greg 1.1
158     /* compute refracted ray */
159     d1 = nratio*cos1 - cos2;
160     for (i = 0; i < 3; i++)
161     p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
162 gwlarson 2.14 /* accidental reflection? */
163     if (hastexture &&
164     DOT(p.rdir,r->ron)*hastexture >= -FTINY) {
165     d1 *= (double)hastexture;
166     for (i = 0; i < 3; i++) /* ignore texture */
167     p.rdir[i] = nratio*r->rdir[i] +
168     d1*r->ron[i];
169     normalize(p.rdir); /* not exact */
170     }
171 greg 1.1 #ifdef DISPERSE
172     if (m->otype != MAT_DIELECTRIC
173     || r->rod > 0.0
174     || r->crtype & SHADOW
175 greg 2.3 || !directvis
176 greg 1.1 || m->oargs.farg[4] == 0.0
177 greg 2.12 || !disperse(m, r, p.rdir,
178     trans, ctrans, talb))
179 greg 1.1 #endif
180     {
181 greg 2.9 copycolor(p.cext, ctrans);
182 greg 2.11 copycolor(p.albedo, talb);
183 greg 1.1 rayvalue(&p);
184     scalecolor(p.rcol, trans);
185     addcolor(r->rcol, p.rcol);
186 greg 2.4 if (nratio >= 1.0-FTINY && nratio <= 1.0+FTINY)
187     r->rt = r->rot + p.rt;
188 greg 1.1 }
189     }
190     }
191    
192     if (!(r->crtype & SHADOW) &&
193 gwlarson 2.13 rayorigin(&p, r, REFLECTED, refl) == 0) {
194 greg 1.1
195     /* compute reflected ray */
196     for (i = 0; i < 3; i++)
197     p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
198 gwlarson 2.14 /* accidental penetration? */
199     if (hastexture && DOT(p.rdir,r->ron)*hastexture <= FTINY)
200     for (i = 0; i < 3; i++) /* ignore texture */
201     p.rdir[i] = r->rdir[i] + 2.0*r->rod*r->ron[i];
202 greg 1.1
203     rayvalue(&p); /* reflected ray value */
204    
205     scalecolor(p.rcol, refl); /* color contribution */
206     addcolor(r->rcol, p.rcol);
207     }
208 greg 2.9 /* rayvalue() computes absorption */
209 greg 2.7 return(1);
210 greg 1.1 }
211    
212    
213     #ifdef DISPERSE
214    
215     static
216 greg 2.12 disperse(m, r, vt, tr, cet, abt) /* check light sources for dispersion */
217 greg 1.1 OBJREC *m;
218     RAY *r;
219     FVECT vt;
220     double tr;
221 greg 2.12 COLOR cet, abt;
222 greg 1.1 {
223     RAY sray, *entray;
224     FVECT v1, v2, n1, n2;
225     FVECT dv, v2Xdv;
226     double v2Xdvv2Xdv;
227 greg 1.7 int success = 0;
228     SRCINDEX si;
229 greg 1.1 FVECT vtmp1, vtmp2;
230     double dtmp1, dtmp2;
231     int l1, l2;
232     COLOR ctmp;
233     int i;
234    
235     /*
236     * This routine computes dispersion to the first order using
237     * the following assumptions:
238     *
239     * 1) The dependency of the index of refraction on wavelength
240     * is approximated by Hartmann's equation with lambda0
241     * equal to zero.
242     * 2) The entry and exit locations are constant with respect
243     * to dispersion.
244     *
245     * The second assumption permits us to model dispersion without
246     * having to sample refracted directions. We assume that the
247     * geometry inside the material is constant, and concern ourselves
248     * only with the relationship between the entering and exiting ray.
249     * We compute the first derivatives of the entering and exiting
250     * refraction with respect to the index of refraction. This
251     * is then used in a first order Taylor series to determine the
252     * index of refraction necessary to send the exiting ray to each
253     * light source.
254     * If an exiting ray hits a light source within the refraction
255     * boundaries, we sum all the frequencies over the disc of the
256     * light source to determine the resulting color. A smaller light
257     * source will therefore exhibit a sharper spectrum.
258     */
259    
260     if (!(r->crtype & REFRACTED)) { /* ray started in material */
261     VCOPY(v1, r->rdir);
262     n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
263     } else {
264     /* find entry point */
265     for (entray = r; entray->rtype != REFRACTED;
266     entray = entray->parent)
267     ;
268     entray = entray->parent;
269     if (entray->crtype & REFRACTED) /* too difficult */
270     return(0);
271     VCOPY(v1, entray->rdir);
272     VCOPY(n1, entray->ron);
273     }
274     VCOPY(v2, vt); /* exiting ray */
275     VCOPY(n2, r->ron);
276    
277     /* first order dispersion approx. */
278     dtmp1 = DOT(n1, v1);
279     dtmp2 = DOT(n2, v2);
280     for (i = 0; i < 3; i++)
281     dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
282    
283     if (DOT(dv, dv) <= FTINY) /* null effect */
284     return(0);
285     /* compute plane normal */
286     fcross(v2Xdv, v2, dv);
287     v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
288    
289     /* check sources */
290 greg 1.7 initsrcindex(&si);
291     while (srcray(&sray, r, &si)) {
292 greg 1.1
293 greg 1.7 if (DOT(sray.rdir, v2) < MINCOS)
294 greg 1.1 continue; /* bad source */
295     /* adjust source ray */
296    
297     dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
298     sray.rdir[0] -= dtmp1 * v2Xdv[0];
299     sray.rdir[1] -= dtmp1 * v2Xdv[1];
300     sray.rdir[2] -= dtmp1 * v2Xdv[2];
301    
302     l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
303    
304     if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
305     continue;
306     /* trace source ray */
307 greg 2.12 copycolor(sray.cext, cet);
308     copycolor(sray.albedo, abt);
309 greg 1.1 normalize(sray.rdir);
310     rayvalue(&sray);
311 greg 1.2 if (bright(sray.rcol) <= FTINY) /* missed it */
312 greg 1.1 continue;
313    
314     /*
315     * Compute spectral sum over diameter of source.
316     * First find directions for rays going to opposite
317     * sides of source, then compute wavelengths for each.
318     */
319    
320     fcross(vtmp1, v2Xdv, sray.rdir);
321 greg 1.7 dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
322 greg 1.1
323     /* compute first ray */
324     for (i = 0; i < 3; i++)
325     vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
326    
327     l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
328     if (l1 < 0)
329     continue;
330     /* compute second ray */
331     for (i = 0; i < 3; i++)
332     vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
333    
334     l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
335     if (l2 < 0)
336     continue;
337     /* compute color from spectrum */
338     if (l1 < l2)
339     spec_rgb(ctmp, l1, l2);
340     else
341     spec_rgb(ctmp, l2, l1);
342     multcolor(ctmp, sray.rcol);
343     scalecolor(ctmp, tr);
344     addcolor(r->rcol, ctmp);
345     success++;
346     }
347     return(success);
348     }
349    
350    
351     static int
352     lambda(m, v2, dv, lr) /* compute lambda for material */
353     register OBJREC *m;
354     FVECT v2, dv, lr;
355     {
356     FVECT lrXdv, v2Xlr;
357     double dtmp, denom;
358     int i;
359    
360     fcross(lrXdv, lr, dv);
361     for (i = 0; i < 3; i++)
362     if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
363     break;
364     if (i >= 3)
365     return(-1);
366    
367     fcross(v2Xlr, v2, lr);
368    
369     dtmp = m->oargs.farg[4] / MLAMBDA;
370     denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
371    
372     if (denom < FTINY)
373     return(-1);
374    
375     return(m->oargs.farg[4] / denom);
376     }
377    
378     #endif /* DISPERSE */