ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/dielectric.c
Revision: 1.4
Committed: Wed May 30 19:56:58 1990 UTC (33 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.3: +4 -2 lines
Log Message:
improved computation of r->rt using brightness comparison

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1986 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * dielectric.c - shading function for transparent materials.
9     *
10     * 9/6/85
11     */
12    
13     #include "ray.h"
14    
15     #include "otypes.h"
16    
17     #ifdef DISPERSE
18     #include "source.h"
19     #endif
20    
21     /*
22     * Explicit calculations for Fresnel's equation are performed,
23     * but only one square root computation is necessary.
24     * The index of refraction is given as a Hartmann equation
25     * with lambda0 equal to zero. If the slope of Hartmann's
26     * equation is non-zero, the material disperses light upon
27     * refraction. This condition is examined on rays traced to
28     * light sources. If a ray is exiting a dielectric material, we
29     * check the sources to see if any would cause bright color to be
30     * directed to the viewer due to dispersion. This gives colorful
31     * sparkle to crystals, etc. (Only if DISPERSE is defined!)
32     *
33     * Arguments for MAT_DIELECTRIC are:
34     * red grn blu rndx Hartmann
35     *
36     * Arguments for MAT_INTERFACE are:
37     * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
38     *
39     * The primaries are material transmission per unit length.
40     * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
41     * outside.
42     */
43    
44    
45     #define MLAMBDA 500 /* mean lambda */
46     #define MAXLAMBDA 779 /* maximum lambda */
47     #define MINLAMBDA 380 /* minimum lambda */
48    
49     #define MINCOS 0.997 /* minimum dot product for dispersion */
50    
51    
52     m_dielectric(m, r) /* color a ray which hit something transparent */
53     OBJREC *m;
54     register RAY *r;
55     {
56     double sqrt(), pow();
57     double cos1, cos2, nratio;
58     COLOR mcolor;
59     double mabsorp;
60 greg 1.4 double refl, trans, transbright;
61 greg 1.1 FVECT dnorm;
62     double d1, d2;
63     RAY p;
64     register int i;
65    
66     if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
67     objerror(m, USER, "bad arguments");
68    
69     raytexture(r, m->omod); /* get modifiers */
70    
71     cos1 = raynormal(dnorm, r); /* cosine of theta1 */
72     /* index of refraction */
73     if (m->otype == MAT_DIELECTRIC)
74     nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
75     else
76     nratio = m->oargs.farg[3] / m->oargs.farg[7];
77    
78     if (cos1 < 0.0) { /* inside */
79     cos1 = -cos1;
80     dnorm[0] = -dnorm[0];
81     dnorm[1] = -dnorm[1];
82     dnorm[2] = -dnorm[2];
83     setcolor(mcolor, pow(m->oargs.farg[0], r->rot),
84     pow(m->oargs.farg[1], r->rot),
85     pow(m->oargs.farg[2], r->rot));
86     } else { /* outside */
87     nratio = 1.0 / nratio;
88     if (m->otype == MAT_INTERFACE)
89     setcolor(mcolor, pow(m->oargs.farg[4], r->rot),
90     pow(m->oargs.farg[5], r->rot),
91     pow(m->oargs.farg[6], r->rot));
92     else
93     setcolor(mcolor, 1.0, 1.0, 1.0);
94     }
95 greg 1.2 mabsorp = bright(mcolor);
96 greg 1.1
97     d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
98    
99     if (d2 < FTINY) /* total reflection */
100    
101     refl = 1.0;
102    
103     else { /* refraction occurs */
104     /* compute Fresnel's equations */
105     cos2 = sqrt(d2);
106     d1 = cos1;
107     d2 = nratio*cos2;
108     d1 = (d1 - d2) / (d1 + d2);
109     refl = d1 * d1;
110    
111     d1 = 1.0 / cos1;
112     d2 = nratio / cos2;
113     d1 = (d1 - d2) / (d1 + d2);
114     refl += d1 * d1;
115    
116     refl /= 2.0;
117     trans = 1.0 - refl;
118 greg 1.4 transbright = -FTINY;
119 greg 1.1
120     if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
121    
122     /* compute refracted ray */
123     d1 = nratio*cos1 - cos2;
124     for (i = 0; i < 3; i++)
125     p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
126    
127     #ifdef DISPERSE
128     if (m->otype != MAT_DIELECTRIC
129     || r->rod > 0.0
130     || r->crtype & SHADOW
131     || m->oargs.farg[4] == 0.0
132     || !disperse(m, r, p.rdir, trans))
133     #endif
134     {
135     rayvalue(&p);
136     multcolor(mcolor, r->pcol); /* modify */
137     scalecolor(p.rcol, trans);
138     addcolor(r->rcol, p.rcol);
139 greg 1.4 transbright = bright(p.rcol);
140 greg 1.3 r->rt = r->rot + p.rt;
141 greg 1.1 }
142     }
143     }
144    
145     if (!(r->crtype & SHADOW) &&
146     rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
147    
148     /* compute reflected ray */
149     for (i = 0; i < 3; i++)
150     p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
151    
152     rayvalue(&p); /* reflected ray value */
153    
154     scalecolor(p.rcol, refl); /* color contribution */
155     addcolor(r->rcol, p.rcol);
156 greg 1.4 if (bright(p.rcol) > transbright)
157 greg 1.3 r->rt = r->rot + p.rt;
158 greg 1.1 }
159    
160     multcolor(r->rcol, mcolor); /* multiply by transmittance */
161     }
162    
163    
164     #ifdef DISPERSE
165    
166     static
167     disperse(m, r, vt, tr) /* check light sources for dispersion */
168     OBJREC *m;
169     RAY *r;
170     FVECT vt;
171     double tr;
172     {
173     double sqrt();
174     RAY sray, *entray;
175     FVECT v1, v2, n1, n2;
176     FVECT dv, v2Xdv;
177     double v2Xdvv2Xdv;
178     int sn, success = 0;
179     double omega;
180     FVECT vtmp1, vtmp2;
181     double dtmp1, dtmp2;
182     int l1, l2;
183     COLOR ctmp;
184     int i;
185    
186     /*
187     * This routine computes dispersion to the first order using
188     * the following assumptions:
189     *
190     * 1) The dependency of the index of refraction on wavelength
191     * is approximated by Hartmann's equation with lambda0
192     * equal to zero.
193     * 2) The entry and exit locations are constant with respect
194     * to dispersion.
195     *
196     * The second assumption permits us to model dispersion without
197     * having to sample refracted directions. We assume that the
198     * geometry inside the material is constant, and concern ourselves
199     * only with the relationship between the entering and exiting ray.
200     * We compute the first derivatives of the entering and exiting
201     * refraction with respect to the index of refraction. This
202     * is then used in a first order Taylor series to determine the
203     * index of refraction necessary to send the exiting ray to each
204     * light source.
205     * If an exiting ray hits a light source within the refraction
206     * boundaries, we sum all the frequencies over the disc of the
207     * light source to determine the resulting color. A smaller light
208     * source will therefore exhibit a sharper spectrum.
209     */
210    
211     if (!(r->crtype & REFRACTED)) { /* ray started in material */
212     VCOPY(v1, r->rdir);
213     n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
214     } else {
215     /* find entry point */
216     for (entray = r; entray->rtype != REFRACTED;
217     entray = entray->parent)
218     ;
219     entray = entray->parent;
220     if (entray->crtype & REFRACTED) /* too difficult */
221     return(0);
222     VCOPY(v1, entray->rdir);
223     VCOPY(n1, entray->ron);
224     }
225     VCOPY(v2, vt); /* exiting ray */
226     VCOPY(n2, r->ron);
227    
228     /* first order dispersion approx. */
229     dtmp1 = DOT(n1, v1);
230     dtmp2 = DOT(n2, v2);
231     for (i = 0; i < 3; i++)
232     dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
233    
234     if (DOT(dv, dv) <= FTINY) /* null effect */
235     return(0);
236     /* compute plane normal */
237     fcross(v2Xdv, v2, dv);
238     v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
239    
240     /* check sources */
241     for (sn = 0; sn < nsources; sn++) {
242    
243     if ((omega = srcray(&sray, r, sn)) == 0.0 ||
244     DOT(sray.rdir, v2) < MINCOS)
245     continue; /* bad source */
246    
247     /* adjust source ray */
248    
249     dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
250     sray.rdir[0] -= dtmp1 * v2Xdv[0];
251     sray.rdir[1] -= dtmp1 * v2Xdv[1];
252     sray.rdir[2] -= dtmp1 * v2Xdv[2];
253    
254     l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
255    
256     if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
257     continue;
258     /* trace source ray */
259     normalize(sray.rdir);
260     rayvalue(&sray);
261 greg 1.2 if (bright(sray.rcol) <= FTINY) /* missed it */
262 greg 1.1 continue;
263    
264     /*
265     * Compute spectral sum over diameter of source.
266     * First find directions for rays going to opposite
267     * sides of source, then compute wavelengths for each.
268     */
269    
270     fcross(vtmp1, v2Xdv, sray.rdir);
271     dtmp1 = sqrt(omega / v2Xdvv2Xdv / PI);
272    
273     /* compute first ray */
274     for (i = 0; i < 3; i++)
275     vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
276    
277     l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
278     if (l1 < 0)
279     continue;
280     /* compute second ray */
281     for (i = 0; i < 3; i++)
282     vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
283    
284     l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
285     if (l2 < 0)
286     continue;
287     /* compute color from spectrum */
288     if (l1 < l2)
289     spec_rgb(ctmp, l1, l2);
290     else
291     spec_rgb(ctmp, l2, l1);
292     multcolor(ctmp, sray.rcol);
293     scalecolor(ctmp, tr);
294     addcolor(r->rcol, ctmp);
295     success++;
296     }
297     return(success);
298     }
299    
300    
301     static int
302     lambda(m, v2, dv, lr) /* compute lambda for material */
303     register OBJREC *m;
304     FVECT v2, dv, lr;
305     {
306     FVECT lrXdv, v2Xlr;
307     double dtmp, denom;
308     int i;
309    
310     fcross(lrXdv, lr, dv);
311     for (i = 0; i < 3; i++)
312     if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
313     break;
314     if (i >= 3)
315     return(-1);
316    
317     fcross(v2Xlr, v2, lr);
318    
319     dtmp = m->oargs.farg[4] / MLAMBDA;
320     denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
321    
322     if (denom < FTINY)
323     return(-1);
324    
325     return(m->oargs.farg[4] / denom);
326     }
327    
328     #endif /* DISPERSE */