ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/colortab.c
Revision: 1.6
Committed: Wed Oct 4 09:23:38 1989 UTC (34 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.5: +4 -2 lines
Log Message:
Changed new_ctab() error handling

File Contents

# Content
1 /* Copyright (c) 1989 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * colortab.c - allocate and control dynamic color table.
9 *
10 * We start off with a uniform partition of color space.
11 * As pixels are sent to the frame buffer, a histogram is built.
12 * When a new color table is requested, the histogram is used
13 * to make a pseudo-optimal partition, after which the
14 * histogram is cleared. This algorithm
15 * performs only as well as the next drawing's color
16 * distribution is correlated to the last.
17 */
18
19 #include "color.h"
20
21 #define NULL 0
22 /* histogram resolution */
23 #define NRED 24
24 #define NGRN 32
25 #define NBLU 16
26 #define HMAX NGRN
27 /* minimum box count for adaptive partition */
28 #define MINSAMP 7
29 /* maximum distance^2 before color reassign */
30 #define MAXDST2 12
31 /* maximum frame buffer depth */
32 #define FBDEPTH 8
33 /* map a color */
34 #define map_col(c,p) clrmap[p][ colval(c,p)<1. ? \
35 (int)(colval(c,p)*256.) : 255 ]
36 /* color partition tree */
37 #define CNODE short
38 #define set_branch(p,c) ((c)<<2|(p))
39 #define set_pval(pv) ((pv)<<2|3)
40 #define is_pval(cn) (((cn)&3)==3)
41 #define part(cn) ((cn)>>2)
42 #define prim(cn) ((cn)&3)
43 #define pval(cn) ((cn)>>2)
44 /* our color table */
45 static struct tabent {
46 long sum[3]; /* sum of colors using this entry */
47 long n; /* number of colors */
48 short ent[3]; /* current table value */
49 } clrtab[1<<FBDEPTH];
50 /* our color correction map */
51 static BYTE clrmap[3][256];
52 /* histogram of colors used */
53 static unsigned histo[NRED][NGRN][NBLU];
54 /* initial color cube boundaries */
55 static int CLRCUBE[3][2] = {0,NRED,0,NGRN,0,NBLU};
56 /* color cube partition */
57 static CNODE ctree[1<<(FBDEPTH+1)];
58
59
60 int
61 new_ctab(ncolors) /* start new color table with max ncolors */
62 int ncolors;
63 {
64 if (ncolors < 1)
65 return(0);
66 if (ncolors > 1<<FBDEPTH)
67 ncolors = 1<<FBDEPTH;
68 /* clear color table */
69 bzero(clrtab, sizeof(clrtab));
70 /* partition color space */
71 cut(ctree, FBDEPTH, CLRCUBE, 0, ncolors);
72 /* clear histogram */
73 bzero(histo, sizeof(histo));
74 /* return number of colors used */
75 return(ncolors);
76 }
77
78
79 int
80 get_pixel(col, set_pixel) /* get pixel for color */
81 COLOR col;
82 int (*set_pixel)();
83 {
84 int r, g, b;
85 int cv[3];
86 register union { CNODE *t; struct tabent *e; } p;
87 register int h;
88 /* map color */
89 r = map_col(col,RED);
90 g = map_col(col,GRN);
91 b = map_col(col,BLU);
92 /* reduce resolution */
93 cv[RED] = (r*NRED)>>8;
94 cv[GRN] = (g*NGRN)>>8;
95 cv[BLU] = (b*NBLU)>>8;
96 /* add to histogram */
97 histo[cv[RED]][cv[GRN]][cv[BLU]]++;
98 /* find pixel in tree */
99 p.t = ctree;
100 for (h = FBDEPTH; h > 0; h--) {
101 if (is_pval(*p.t))
102 break;
103 if (cv[prim(*p.t)] < part(*p.t))
104 p.t++; /* left branch */
105 else
106 p.t += 1<<h; /* right branch */
107 }
108 h = pval(*p.t);
109 /* add to color table */
110 p.e = clrtab + h;
111 /* add to sum */
112 p.e->sum[RED] += r;
113 p.e->sum[GRN] += g;
114 p.e->sum[BLU] += b;
115 p.e->n++;
116 /* recompute average */
117 r = p.e->sum[RED] / p.e->n;
118 g = p.e->sum[GRN] / p.e->n;
119 b = p.e->sum[BLU] / p.e->n;
120 /* check for movement */
121 if (p.e->n == 1 ||
122 (r-p.e->ent[RED])*(r-p.e->ent[RED]) +
123 (g-p.e->ent[GRN])*(g-p.e->ent[GRN]) +
124 (b-p.e->ent[BLU])*(b-p.e->ent[BLU]) > MAXDST2) {
125 p.e->ent[RED] = r;
126 p.e->ent[GRN] = g; /* reassign pixel */
127 p.e->ent[BLU] = b;
128 #ifdef notdef
129 printf("pixel %d = (%d,%d,%d) (%d refs)\n",
130 h, r, g, b, p.e->n);
131 #endif
132 (*set_pixel)(h, r, g, b);
133 }
134 return(h); /* return pixel value */
135 }
136
137
138 make_gmap(gam) /* make gamma correction map */
139 double gam;
140 {
141 extern double pow();
142 register int i;
143
144 for (i = 0; i < 256; i++)
145 clrmap[RED][i] =
146 clrmap[GRN][i] =
147 clrmap[BLU][i] = 256.0 * pow(i/256.0, 1.0/gam);
148 }
149
150
151 set_cmap(rmap, gmap, bmap) /* set custom color correction map */
152 BYTE *rmap, *gmap, *bmap;
153 {
154 bcopy(rmap, clrmap[RED], 256);
155 bcopy(gmap, clrmap[GRN], 256);
156 bcopy(bmap, clrmap[BLU], 256);
157 }
158
159
160 static
161 cut(tree, height, box, c0, c1) /* partition color space */
162 register CNODE *tree;
163 int height;
164 register int box[3][2];
165 int c0, c1;
166 {
167 int kb[3][2];
168
169 if (c1-c0 <= 1) { /* assign pixel */
170 *tree = set_pval(c0);
171 return;
172 }
173 /* split box */
174 *tree = split(box);
175 bcopy(box, kb, sizeof(kb));
176 /* do left (lesser) branch */
177 kb[prim(*tree)][1] = part(*tree);
178 cut(tree+1, height-1, kb, c0, (c0+c1)>>1);
179 /* do right branch */
180 kb[prim(*tree)][0] = part(*tree);
181 kb[prim(*tree)][1] = box[prim(*tree)][1];
182 cut(tree+(1<<height), height-1, kb, (c0+c1)>>1, c1);
183 }
184
185
186 static int
187 split(box) /* find median cut for box */
188 register int box[3][2];
189 {
190 #define c0 r
191 register int r, g, b;
192 int pri;
193 int t[HMAX], med;
194 /* find dominant axis */
195 pri = RED;
196 if (box[GRN][1]-box[GRN][0] > box[pri][1]-box[pri][0])
197 pri = GRN;
198 if (box[BLU][1]-box[BLU][0] > box[pri][1]-box[pri][0])
199 pri = BLU;
200 /* sum histogram over box */
201 med = 0;
202 switch (pri) {
203 case RED:
204 for (r = box[RED][0]; r < box[RED][1]; r++) {
205 t[r] = 0;
206 for (g = box[GRN][0]; g < box[GRN][1]; g++)
207 for (b = box[BLU][0]; b < box[BLU][1]; b++)
208 t[r] += histo[r][g][b];
209 med += t[r];
210 }
211 break;
212 case GRN:
213 for (g = box[GRN][0]; g < box[GRN][1]; g++) {
214 t[g] = 0;
215 for (b = box[BLU][0]; b < box[BLU][1]; b++)
216 for (r = box[RED][0]; r < box[RED][1]; r++)
217 t[g] += histo[r][g][b];
218 med += t[g];
219 }
220 break;
221 case BLU:
222 for (b = box[BLU][0]; b < box[BLU][1]; b++) {
223 t[b] = 0;
224 for (r = box[RED][0]; r < box[RED][1]; r++)
225 for (g = box[GRN][0]; g < box[GRN][1]; g++)
226 t[b] += histo[r][g][b];
227 med += t[b];
228 }
229 break;
230 }
231 if (med < MINSAMP) /* if too sparse, split at midpoint */
232 return(set_branch(pri,(box[pri][0]+box[pri][1])>>1));
233 /* find median position */
234 med >>= 1;
235 for (c0 = box[pri][0]; med > 0; c0++)
236 med -= t[c0];
237 if (c0 > (box[pri][0]+box[pri][1])>>1) /* if past the midpoint */
238 c0--; /* part left of median */
239 return(set_branch(pri,c0));
240 #undef c0
241 }