ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/colortab.c
Revision: 1.13
Committed: Fri Feb 23 10:08:33 1990 UTC (34 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.12: +10 -0 lines
Log Message:
added map_color function

File Contents

# Content
1 /* Copyright (c) 1989 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * colortab.c - allocate and control dynamic color table.
9 *
10 * We start off with a uniform partition of color space.
11 * As pixels are sent to the frame buffer, a histogram is built.
12 * When a new color table is requested, the histogram is used
13 * to make a pseudo-optimal partition, after which the
14 * histogram is cleared. This algorithm
15 * performs only as well as the next drawing's color
16 * distribution is correlated to the last.
17 */
18
19 #include "color.h"
20
21 #define NULL 0
22 /* histogram resolution */
23 #define NRED 24
24 #define NGRN 32
25 #define NBLU 16
26 #define HMAX NGRN
27 /* minimum box count for adaptive partition */
28 #define MINSAMP 7
29 /* maximum distance^2 before color reassign */
30 #define MAXDST2 12
31 /* map a color */
32 #define map_col(c,p) clrmap[p][ colval(c,p)<1. ? \
33 (int)(colval(c,p)*256.) : 255 ]
34 /* color partition tree */
35 #define CNODE short
36 #define set_branch(p,c) ((c)<<2|(p))
37 #define set_pval(pv) ((pv)<<2|3)
38 #define is_branch(cn) (((cn)&3)!=3)
39 #define is_pval(cn) (((cn)&3)==3)
40 #define part(cn) ((cn)>>2)
41 #define prim(cn) ((cn)&3)
42 #define pval(cn) ((cn)>>2)
43 /* our color table */
44 static struct tabent {
45 long sum[3]; /* sum of colors using this entry */
46 long n; /* number of colors */
47 short ent[3]; /* current table value */
48 } *clrtab = NULL;
49 /* color cube partition */
50 static CNODE *ctree = NULL;
51 /* our color correction map */
52 static BYTE clrmap[3][256];
53 /* histogram of colors used */
54 static unsigned short histo[NRED][NGRN][NBLU];
55 /* initial color cube boundary */
56 static int CLRCUBE[3][2] = {0,NRED,0,NGRN,0,NBLU};
57
58
59 int
60 new_ctab(ncolors) /* start new color table with max ncolors */
61 int ncolors;
62 {
63 int treesize;
64
65 if (ncolors < 1)
66 return(0);
67 /* free old tables */
68 if (clrtab != NULL)
69 free((char *)clrtab);
70 if (ctree != NULL)
71 free((char *)ctree);
72 /* get new tables */
73 for (treesize = 1; treesize < ncolors; treesize <<= 1)
74 ;
75 treesize <<= 1;
76 clrtab = (struct tabent *)calloc(ncolors, sizeof(struct tabent));
77 ctree = (CNODE *)malloc(treesize*sizeof(CNODE));
78 if (clrtab == NULL || ctree == NULL)
79 return(0);
80 /* partition color space */
81 cut(ctree, 0, CLRCUBE, 0, ncolors);
82 /* clear histogram */
83 bzero((char *)histo, sizeof(histo));
84 /* return number of colors used */
85 return(ncolors);
86 }
87
88
89 int
90 get_pixel(col, set_pixel) /* get pixel for color */
91 COLOR col;
92 int (*set_pixel)();
93 {
94 int r, g, b;
95 int cv[3];
96 register CNODE *tp;
97 register int h;
98 /* map color */
99 r = map_col(col,RED);
100 g = map_col(col,GRN);
101 b = map_col(col,BLU);
102 /* reduce resolution */
103 cv[RED] = (r*NRED)>>8;
104 cv[GRN] = (g*NGRN)>>8;
105 cv[BLU] = (b*NBLU)>>8;
106 /* add to histogram */
107 histo[cv[RED]][cv[GRN]][cv[BLU]]++;
108 /* find pixel in tree */
109 for (tp = ctree, h = 0; is_branch(*tp); h++)
110 if (cv[prim(*tp)] < part(*tp))
111 tp += 1<<h; /* left branch */
112 else
113 tp += 1<<(h+1); /* right branch */
114 h = pval(*tp);
115 /* add to color table */
116 clrtab[h].sum[RED] += r;
117 clrtab[h].sum[GRN] += g;
118 clrtab[h].sum[BLU] += b;
119 clrtab[h].n++;
120 /* recompute average */
121 r = clrtab[h].sum[RED] / clrtab[h].n;
122 g = clrtab[h].sum[GRN] / clrtab[h].n;
123 b = clrtab[h].sum[BLU] / clrtab[h].n;
124 /* check for movement */
125 if (clrtab[h].n == 1 ||
126 (r-clrtab[h].ent[RED])*(r-clrtab[h].ent[RED]) +
127 (g-clrtab[h].ent[GRN])*(g-clrtab[h].ent[GRN]) +
128 (b-clrtab[h].ent[BLU])*(b-clrtab[h].ent[BLU]) > MAXDST2) {
129 clrtab[h].ent[RED] = r;
130 clrtab[h].ent[GRN] = g; /* reassign pixel */
131 clrtab[h].ent[BLU] = b;
132 #ifdef DEBUG
133 sprintf(errmsg, "pixel %d = (%d,%d,%d) (%d refs)\n",
134 h, r, g, b, clrtab[h].n);
135 eputs(errmsg);
136 #endif
137 (*set_pixel)(h, r, g, b);
138 }
139 return(h); /* return pixel value */
140 }
141
142
143 make_gmap(gam) /* make gamma correction map */
144 double gam;
145 {
146 extern double pow();
147 register int i;
148
149 for (i = 0; i < 256; i++)
150 clrmap[RED][i] =
151 clrmap[GRN][i] =
152 clrmap[BLU][i] = 256.0 * pow(i/256.0, 1.0/gam);
153 }
154
155
156 set_cmap(rmap, gmap, bmap) /* set custom color correction map */
157 BYTE *rmap, *gmap, *bmap;
158 {
159 bcopy((char *)rmap, (char *)clrmap[RED], 256);
160 bcopy((char *)gmap, (char *)clrmap[GRN], 256);
161 bcopy((char *)bmap, (char *)clrmap[BLU], 256);
162 }
163
164
165 map_color(rgb, col) /* map a color to a byte triplet */
166 BYTE rgb[3];
167 COLOR col;
168 {
169 rgb[RED] = map_col(col,RED);
170 rgb[GRN] = map_col(col,GRN);
171 rgb[BLU] = map_col(col,BLU);
172 }
173
174
175 static
176 cut(tree, level, box, c0, c1) /* partition color space */
177 register CNODE *tree;
178 int level;
179 register int box[3][2];
180 int c0, c1;
181 {
182 int kb[3][2];
183
184 if (c1-c0 <= 1) { /* assign pixel */
185 *tree = set_pval(c0);
186 return;
187 }
188 /* split box */
189 *tree = split(box);
190 bcopy((char *)box, (char *)kb, sizeof(kb));
191 /* do left (lesser) branch */
192 kb[prim(*tree)][1] = part(*tree);
193 cut(tree+(1<<level), level+1, kb, c0, (c0+c1)>>1);
194 /* do right branch */
195 kb[prim(*tree)][0] = part(*tree);
196 kb[prim(*tree)][1] = box[prim(*tree)][1];
197 cut(tree+(1<<(level+1)), level+1, kb, (c0+c1)>>1, c1);
198 }
199
200
201 static int
202 split(box) /* find median cut for box */
203 register int box[3][2];
204 {
205 #define c0 r
206 register int r, g, b;
207 int pri;
208 int t[HMAX], med;
209 /* find dominant axis */
210 pri = RED;
211 if (box[GRN][1]-box[GRN][0] > box[pri][1]-box[pri][0])
212 pri = GRN;
213 if (box[BLU][1]-box[BLU][0] > box[pri][1]-box[pri][0])
214 pri = BLU;
215 /* sum histogram over box */
216 med = 0;
217 switch (pri) {
218 case RED:
219 for (r = box[RED][0]; r < box[RED][1]; r++) {
220 t[r] = 0;
221 for (g = box[GRN][0]; g < box[GRN][1]; g++)
222 for (b = box[BLU][0]; b < box[BLU][1]; b++)
223 t[r] += histo[r][g][b];
224 med += t[r];
225 }
226 break;
227 case GRN:
228 for (g = box[GRN][0]; g < box[GRN][1]; g++) {
229 t[g] = 0;
230 for (b = box[BLU][0]; b < box[BLU][1]; b++)
231 for (r = box[RED][0]; r < box[RED][1]; r++)
232 t[g] += histo[r][g][b];
233 med += t[g];
234 }
235 break;
236 case BLU:
237 for (b = box[BLU][0]; b < box[BLU][1]; b++) {
238 t[b] = 0;
239 for (r = box[RED][0]; r < box[RED][1]; r++)
240 for (g = box[GRN][0]; g < box[GRN][1]; g++)
241 t[b] += histo[r][g][b];
242 med += t[b];
243 }
244 break;
245 }
246 if (med < MINSAMP) /* if too sparse, split at midpoint */
247 return(set_branch(pri,(box[pri][0]+box[pri][1])>>1));
248 /* find median position */
249 med >>= 1;
250 for (c0 = box[pri][0]; med > 0; c0++)
251 med -= t[c0];
252 if (c0 > (box[pri][0]+box[pri][1])>>1) /* if past the midpoint */
253 c0--; /* part left of median */
254 return(set_branch(pri,c0));
255 #undef c0
256 }