ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/colortab.c
Revision: 2.8
Committed: Mon Jun 30 14:59:12 2003 UTC (20 years, 10 months ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.7: +9 -7 lines
Log Message:
Replaced most outdated BSD function calls with their posix equivalents, and cleaned up a few other platform dependencies.

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 schorsch 2.8 static const char RCSid[] = "$Id: colortab.c,v 2.7 2003/05/13 17:58:33 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * colortab.c - allocate and control dynamic color table.
6     *
7     * We start off with a uniform partition of color space.
8     * As pixels are sent to the frame buffer, a histogram is built.
9     * When a new color table is requested, the histogram is used
10     * to make a pseudo-optimal partition, after which the
11     * histogram is cleared. This algorithm
12     * performs only as well as the next drawing's color
13     * distribution is correlated to the last.
14 greg 2.5 *
15     * External symbols declared in drvier.h
16     */
17    
18 greg 2.6 #include "copyright.h"
19 greg 1.1
20 schorsch 2.8 #include <string.h>
21    
22 greg 1.15 #include "standard.h"
23 schorsch 2.8 #include "color.h"
24 greg 1.15
25 greg 1.1 /* histogram resolution */
26 greg 1.3 #define NRED 24
27 greg 1.1 #define NGRN 32
28 greg 1.3 #define NBLU 16
29 greg 1.1 #define HMAX NGRN
30     /* minimum box count for adaptive partition */
31     #define MINSAMP 7
32 greg 1.3 /* maximum distance^2 before color reassign */
33 greg 1.5 #define MAXDST2 12
34 greg 1.1 /* map a color */
35 greg 1.4 #define map_col(c,p) clrmap[p][ colval(c,p)<1. ? \
36     (int)(colval(c,p)*256.) : 255 ]
37 greg 1.1 /* color partition tree */
38     #define CNODE short
39 greg 2.2 #define set_branch(p,c) ((c)<<2|(p))
40 greg 1.1 #define set_pval(pv) ((pv)<<2|3)
41 greg 1.7 #define is_branch(cn) (((cn)&3)!=3)
42 greg 1.1 #define is_pval(cn) (((cn)&3)==3)
43     #define part(cn) ((cn)>>2)
44     #define prim(cn) ((cn)&3)
45     #define pval(cn) ((cn)>>2)
46     /* our color table */
47 greg 1.6 static struct tabent {
48 greg 1.3 long sum[3]; /* sum of colors using this entry */
49 greg 1.15 int n; /* number of colors */
50     BYTE ent[3]; /* current table value */
51 greg 1.8 } *clrtab = NULL;
52     /* color cube partition */
53     static CNODE *ctree = NULL;
54 greg 1.1 /* our color correction map */
55 greg 1.4 static BYTE clrmap[3][256];
56 greg 1.1 /* histogram of colors used */
57 greg 1.9 static unsigned short histo[NRED][NGRN][NBLU];
58 greg 1.8 /* initial color cube boundary */
59 greg 2.3 static int CLRCUBE[3][2] = {{0,NRED},{0,NGRN},{0,NBLU}};
60    
61 greg 2.5 static int split();
62     static void cut();
63 greg 1.1
64    
65 greg 1.3 int
66 greg 1.4 new_ctab(ncolors) /* start new color table with max ncolors */
67 greg 1.1 int ncolors;
68     {
69 greg 1.8 int treesize;
70    
71 greg 1.6 if (ncolors < 1)
72 greg 1.3 return(0);
73 greg 1.8 /* free old tables */
74     if (clrtab != NULL)
75 greg 2.5 free((void *)clrtab);
76 greg 1.8 if (ctree != NULL)
77 greg 2.5 free((void *)ctree);
78 greg 1.8 /* get new tables */
79     for (treesize = 1; treesize < ncolors; treesize <<= 1)
80     ;
81     treesize <<= 1;
82     clrtab = (struct tabent *)calloc(ncolors, sizeof(struct tabent));
83     ctree = (CNODE *)malloc(treesize*sizeof(CNODE));
84     if (clrtab == NULL || ctree == NULL)
85     return(0);
86 greg 1.3 /* partition color space */
87 greg 1.7 cut(ctree, 0, CLRCUBE, 0, ncolors);
88 greg 1.1 /* clear histogram */
89 schorsch 2.8 memset((void *)histo, '\0', sizeof(histo));
90 greg 1.3 /* return number of colors used */
91     return(ncolors);
92 greg 1.1 }
93    
94    
95     int
96 greg 1.4 get_pixel(col, set_pixel) /* get pixel for color */
97 greg 1.1 COLOR col;
98 greg 2.5 void (*set_pixel)();
99 greg 1.1 {
100 greg 1.3 int r, g, b;
101 greg 1.1 int cv[3];
102 greg 1.10 register CNODE *tp;
103 greg 1.1 register int h;
104 greg 1.3 /* map color */
105     r = map_col(col,RED);
106     g = map_col(col,GRN);
107     b = map_col(col,BLU);
108     /* reduce resolution */
109     cv[RED] = (r*NRED)>>8;
110     cv[GRN] = (g*NGRN)>>8;
111     cv[BLU] = (b*NBLU)>>8;
112     /* add to histogram */
113 greg 1.1 histo[cv[RED]][cv[GRN]][cv[BLU]]++;
114 greg 1.3 /* find pixel in tree */
115 greg 1.10 for (tp = ctree, h = 0; is_branch(*tp); h++)
116     if (cv[prim(*tp)] < part(*tp))
117     tp += 1<<h; /* left branch */
118 greg 1.1 else
119 greg 1.15 tp += 1<<(h+1); /* right branch */
120 greg 1.10 h = pval(*tp);
121 greg 1.3 /* add to color table */
122 greg 1.10 clrtab[h].sum[RED] += r;
123     clrtab[h].sum[GRN] += g;
124     clrtab[h].sum[BLU] += b;
125     clrtab[h].n++;
126 greg 1.3 /* recompute average */
127 greg 1.10 r = clrtab[h].sum[RED] / clrtab[h].n;
128     g = clrtab[h].sum[GRN] / clrtab[h].n;
129     b = clrtab[h].sum[BLU] / clrtab[h].n;
130 greg 1.3 /* check for movement */
131 greg 1.10 if (clrtab[h].n == 1 ||
132     (r-clrtab[h].ent[RED])*(r-clrtab[h].ent[RED]) +
133     (g-clrtab[h].ent[GRN])*(g-clrtab[h].ent[GRN]) +
134     (b-clrtab[h].ent[BLU])*(b-clrtab[h].ent[BLU]) > MAXDST2) {
135     clrtab[h].ent[RED] = r;
136 greg 2.2 clrtab[h].ent[GRN] = g; /* reassign pixel */
137 greg 1.10 clrtab[h].ent[BLU] = b;
138 greg 1.12 #ifdef DEBUG
139     sprintf(errmsg, "pixel %d = (%d,%d,%d) (%d refs)\n",
140 greg 1.10 h, r, g, b, clrtab[h].n);
141 greg 1.12 eputs(errmsg);
142 greg 1.1 #endif
143 greg 1.3 (*set_pixel)(h, r, g, b);
144     }
145     return(h); /* return pixel value */
146 greg 1.1 }
147    
148    
149 greg 2.5 void
150 greg 1.4 make_gmap(gam) /* make gamma correction map */
151 greg 2.2 double gam;
152 greg 1.1 {
153     register int i;
154    
155 greg 1.4 for (i = 0; i < 256; i++)
156     clrmap[RED][i] =
157     clrmap[GRN][i] =
158 greg 1.15 clrmap[BLU][i] = 256.0 * pow((i+0.5)/256.0, 1.0/gam);
159 greg 1.4 }
160    
161    
162 greg 2.5 void
163 greg 1.4 set_cmap(rmap, gmap, bmap) /* set custom color correction map */
164     BYTE *rmap, *gmap, *bmap;
165     {
166 schorsch 2.8 memcpy((void *)clrmap[RED], (void *)rmap, 256);
167     memcpy((void *)clrmap[GRN], (void *)gmap, 256);
168     memcpy((void *)clrmap[BLU], (void *)bmap, 256);
169 greg 1.1 }
170    
171    
172 greg 2.5 void
173 greg 1.13 map_color(rgb, col) /* map a color to a byte triplet */
174     BYTE rgb[3];
175     COLOR col;
176     {
177     rgb[RED] = map_col(col,RED);
178     rgb[GRN] = map_col(col,GRN);
179     rgb[BLU] = map_col(col,BLU);
180     }
181    
182    
183 greg 2.5 static void
184 greg 1.7 cut(tree, level, box, c0, c1) /* partition color space */
185 greg 1.1 register CNODE *tree;
186 greg 1.7 int level;
187 greg 1.1 register int box[3][2];
188     int c0, c1;
189     {
190     int kb[3][2];
191    
192 greg 1.3 if (c1-c0 <= 1) { /* assign pixel */
193 greg 1.1 *tree = set_pval(c0);
194     return;
195     }
196     /* split box */
197     *tree = split(box);
198 schorsch 2.8 memcpy((void *)kb, (void *)box, sizeof(kb));
199 greg 1.3 /* do left (lesser) branch */
200 greg 1.1 kb[prim(*tree)][1] = part(*tree);
201 greg 1.7 cut(tree+(1<<level), level+1, kb, c0, (c0+c1)>>1);
202 greg 1.3 /* do right branch */
203 greg 1.1 kb[prim(*tree)][0] = part(*tree);
204     kb[prim(*tree)][1] = box[prim(*tree)][1];
205 greg 1.7 cut(tree+(1<<(level+1)), level+1, kb, (c0+c1)>>1, c1);
206 greg 1.1 }
207    
208    
209     static int
210     split(box) /* find median cut for box */
211     register int box[3][2];
212     {
213     #define c0 r
214     register int r, g, b;
215     int pri;
216 greg 2.4 long t[HMAX], med;
217 greg 1.1 /* find dominant axis */
218     pri = RED;
219     if (box[GRN][1]-box[GRN][0] > box[pri][1]-box[pri][0])
220     pri = GRN;
221     if (box[BLU][1]-box[BLU][0] > box[pri][1]-box[pri][0])
222     pri = BLU;
223     /* sum histogram over box */
224     med = 0;
225     switch (pri) {
226     case RED:
227     for (r = box[RED][0]; r < box[RED][1]; r++) {
228     t[r] = 0;
229     for (g = box[GRN][0]; g < box[GRN][1]; g++)
230     for (b = box[BLU][0]; b < box[BLU][1]; b++)
231     t[r] += histo[r][g][b];
232     med += t[r];
233     }
234     break;
235     case GRN:
236     for (g = box[GRN][0]; g < box[GRN][1]; g++) {
237     t[g] = 0;
238     for (b = box[BLU][0]; b < box[BLU][1]; b++)
239     for (r = box[RED][0]; r < box[RED][1]; r++)
240     t[g] += histo[r][g][b];
241     med += t[g];
242     }
243     break;
244     case BLU:
245     for (b = box[BLU][0]; b < box[BLU][1]; b++) {
246     t[b] = 0;
247     for (r = box[RED][0]; r < box[RED][1]; r++)
248     for (g = box[GRN][0]; g < box[GRN][1]; g++)
249     t[b] += histo[r][g][b];
250     med += t[b];
251     }
252     break;
253     }
254     if (med < MINSAMP) /* if too sparse, split at midpoint */
255     return(set_branch(pri,(box[pri][0]+box[pri][1])>>1));
256     /* find median position */
257     med >>= 1;
258     for (c0 = box[pri][0]; med > 0; c0++)
259     med -= t[c0];
260     if (c0 > (box[pri][0]+box[pri][1])>>1) /* if past the midpoint */
261     c0--; /* part left of median */
262     return(set_branch(pri,c0));
263     #undef c0
264     }