ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/colortab.c
Revision: 1.7
Committed: Thu Oct 12 11:12:48 1989 UTC (34 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.6: +9 -12 lines
Log Message:
Changed tree arrangement (for the hell of it).

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1989 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * colortab.c - allocate and control dynamic color table.
9     *
10     * We start off with a uniform partition of color space.
11     * As pixels are sent to the frame buffer, a histogram is built.
12     * When a new color table is requested, the histogram is used
13     * to make a pseudo-optimal partition, after which the
14     * histogram is cleared. This algorithm
15     * performs only as well as the next drawing's color
16     * distribution is correlated to the last.
17     */
18    
19     #include "color.h"
20    
21     #define NULL 0
22     /* histogram resolution */
23 greg 1.3 #define NRED 24
24 greg 1.1 #define NGRN 32
25 greg 1.3 #define NBLU 16
26 greg 1.1 #define HMAX NGRN
27     /* minimum box count for adaptive partition */
28     #define MINSAMP 7
29 greg 1.3 /* maximum distance^2 before color reassign */
30 greg 1.5 #define MAXDST2 12
31 greg 1.1 /* maximum frame buffer depth */
32     #define FBDEPTH 8
33     /* map a color */
34 greg 1.4 #define map_col(c,p) clrmap[p][ colval(c,p)<1. ? \
35     (int)(colval(c,p)*256.) : 255 ]
36 greg 1.1 /* color partition tree */
37     #define CNODE short
38     #define set_branch(p,c) ((c)<<2|(p))
39     #define set_pval(pv) ((pv)<<2|3)
40 greg 1.7 #define is_branch(cn) (((cn)&3)!=3)
41 greg 1.1 #define is_pval(cn) (((cn)&3)==3)
42     #define part(cn) ((cn)>>2)
43     #define prim(cn) ((cn)&3)
44     #define pval(cn) ((cn)>>2)
45     /* our color table */
46 greg 1.6 static struct tabent {
47 greg 1.3 long sum[3]; /* sum of colors using this entry */
48     long n; /* number of colors */
49     short ent[3]; /* current table value */
50     } clrtab[1<<FBDEPTH];
51 greg 1.1 /* our color correction map */
52 greg 1.4 static BYTE clrmap[3][256];
53 greg 1.1 /* histogram of colors used */
54     static unsigned histo[NRED][NGRN][NBLU];
55     /* initial color cube boundaries */
56     static int CLRCUBE[3][2] = {0,NRED,0,NGRN,0,NBLU};
57     /* color cube partition */
58     static CNODE ctree[1<<(FBDEPTH+1)];
59    
60    
61 greg 1.3 int
62 greg 1.4 new_ctab(ncolors) /* start new color table with max ncolors */
63 greg 1.1 int ncolors;
64     {
65 greg 1.6 if (ncolors < 1)
66 greg 1.3 return(0);
67 greg 1.6 if (ncolors > 1<<FBDEPTH)
68     ncolors = 1<<FBDEPTH;
69 greg 1.3 /* clear color table */
70     bzero(clrtab, sizeof(clrtab));
71     /* partition color space */
72 greg 1.7 cut(ctree, 0, CLRCUBE, 0, ncolors);
73 greg 1.1 /* clear histogram */
74     bzero(histo, sizeof(histo));
75 greg 1.3 /* return number of colors used */
76     return(ncolors);
77 greg 1.1 }
78    
79    
80     int
81 greg 1.4 get_pixel(col, set_pixel) /* get pixel for color */
82 greg 1.1 COLOR col;
83 greg 1.4 int (*set_pixel)();
84 greg 1.1 {
85 greg 1.3 int r, g, b;
86 greg 1.1 int cv[3];
87 greg 1.3 register union { CNODE *t; struct tabent *e; } p;
88 greg 1.1 register int h;
89 greg 1.3 /* map color */
90     r = map_col(col,RED);
91     g = map_col(col,GRN);
92     b = map_col(col,BLU);
93     /* reduce resolution */
94     cv[RED] = (r*NRED)>>8;
95     cv[GRN] = (g*NGRN)>>8;
96     cv[BLU] = (b*NBLU)>>8;
97     /* add to histogram */
98 greg 1.1 histo[cv[RED]][cv[GRN]][cv[BLU]]++;
99 greg 1.3 /* find pixel in tree */
100 greg 1.7 for (p.t = ctree, h = 0; is_branch(*p.t); h++)
101 greg 1.3 if (cv[prim(*p.t)] < part(*p.t))
102 greg 1.7 p.t += 1<<h; /* left branch */
103 greg 1.1 else
104 greg 1.7 p.t += 1<<(h+1); /* right branch */
105 greg 1.3 h = pval(*p.t);
106     /* add to color table */
107     p.e = clrtab + h;
108     /* add to sum */
109     p.e->sum[RED] += r;
110     p.e->sum[GRN] += g;
111     p.e->sum[BLU] += b;
112     p.e->n++;
113     /* recompute average */
114     r = p.e->sum[RED] / p.e->n;
115     g = p.e->sum[GRN] / p.e->n;
116     b = p.e->sum[BLU] / p.e->n;
117     /* check for movement */
118     if (p.e->n == 1 ||
119     (r-p.e->ent[RED])*(r-p.e->ent[RED]) +
120     (g-p.e->ent[GRN])*(g-p.e->ent[GRN]) +
121     (b-p.e->ent[BLU])*(b-p.e->ent[BLU]) > MAXDST2) {
122     p.e->ent[RED] = r;
123     p.e->ent[GRN] = g; /* reassign pixel */
124     p.e->ent[BLU] = b;
125 greg 1.1 #ifdef notdef
126 greg 1.3 printf("pixel %d = (%d,%d,%d) (%d refs)\n",
127     h, r, g, b, p.e->n);
128 greg 1.1 #endif
129 greg 1.3 (*set_pixel)(h, r, g, b);
130     }
131     return(h); /* return pixel value */
132 greg 1.1 }
133    
134    
135 greg 1.4 make_gmap(gam) /* make gamma correction map */
136 greg 1.1 double gam;
137     {
138     extern double pow();
139     register int i;
140    
141 greg 1.4 for (i = 0; i < 256; i++)
142     clrmap[RED][i] =
143     clrmap[GRN][i] =
144     clrmap[BLU][i] = 256.0 * pow(i/256.0, 1.0/gam);
145     }
146    
147    
148     set_cmap(rmap, gmap, bmap) /* set custom color correction map */
149     BYTE *rmap, *gmap, *bmap;
150     {
151     bcopy(rmap, clrmap[RED], 256);
152     bcopy(gmap, clrmap[GRN], 256);
153     bcopy(bmap, clrmap[BLU], 256);
154 greg 1.1 }
155    
156    
157     static
158 greg 1.7 cut(tree, level, box, c0, c1) /* partition color space */
159 greg 1.1 register CNODE *tree;
160 greg 1.7 int level;
161 greg 1.1 register int box[3][2];
162     int c0, c1;
163     {
164     int kb[3][2];
165    
166 greg 1.3 if (c1-c0 <= 1) { /* assign pixel */
167 greg 1.1 *tree = set_pval(c0);
168     return;
169     }
170     /* split box */
171     *tree = split(box);
172     bcopy(box, kb, sizeof(kb));
173 greg 1.3 /* do left (lesser) branch */
174 greg 1.1 kb[prim(*tree)][1] = part(*tree);
175 greg 1.7 cut(tree+(1<<level), level+1, kb, c0, (c0+c1)>>1);
176 greg 1.3 /* do right branch */
177 greg 1.1 kb[prim(*tree)][0] = part(*tree);
178     kb[prim(*tree)][1] = box[prim(*tree)][1];
179 greg 1.7 cut(tree+(1<<(level+1)), level+1, kb, (c0+c1)>>1, c1);
180 greg 1.1 }
181    
182    
183     static int
184     split(box) /* find median cut for box */
185     register int box[3][2];
186     {
187     #define c0 r
188     register int r, g, b;
189     int pri;
190     int t[HMAX], med;
191     /* find dominant axis */
192     pri = RED;
193     if (box[GRN][1]-box[GRN][0] > box[pri][1]-box[pri][0])
194     pri = GRN;
195     if (box[BLU][1]-box[BLU][0] > box[pri][1]-box[pri][0])
196     pri = BLU;
197     /* sum histogram over box */
198     med = 0;
199     switch (pri) {
200     case RED:
201     for (r = box[RED][0]; r < box[RED][1]; r++) {
202     t[r] = 0;
203     for (g = box[GRN][0]; g < box[GRN][1]; g++)
204     for (b = box[BLU][0]; b < box[BLU][1]; b++)
205     t[r] += histo[r][g][b];
206     med += t[r];
207     }
208     break;
209     case GRN:
210     for (g = box[GRN][0]; g < box[GRN][1]; g++) {
211     t[g] = 0;
212     for (b = box[BLU][0]; b < box[BLU][1]; b++)
213     for (r = box[RED][0]; r < box[RED][1]; r++)
214     t[g] += histo[r][g][b];
215     med += t[g];
216     }
217     break;
218     case BLU:
219     for (b = box[BLU][0]; b < box[BLU][1]; b++) {
220     t[b] = 0;
221     for (r = box[RED][0]; r < box[RED][1]; r++)
222     for (g = box[GRN][0]; g < box[GRN][1]; g++)
223     t[b] += histo[r][g][b];
224     med += t[b];
225     }
226     break;
227     }
228     if (med < MINSAMP) /* if too sparse, split at midpoint */
229     return(set_branch(pri,(box[pri][0]+box[pri][1])>>1));
230     /* find median position */
231     med >>= 1;
232     for (c0 = box[pri][0]; med > 0; c0++)
233     med -= t[c0];
234     if (c0 > (box[pri][0]+box[pri][1])>>1) /* if past the midpoint */
235     c0--; /* part left of median */
236     return(set_branch(pri,c0));
237     #undef c0
238     }