ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/colortab.c
Revision: 1.6
Committed: Wed Oct 4 09:23:38 1989 UTC (34 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.5: +4 -2 lines
Log Message:
Changed new_ctab() error handling

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1989 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * colortab.c - allocate and control dynamic color table.
9     *
10     * We start off with a uniform partition of color space.
11     * As pixels are sent to the frame buffer, a histogram is built.
12     * When a new color table is requested, the histogram is used
13     * to make a pseudo-optimal partition, after which the
14     * histogram is cleared. This algorithm
15     * performs only as well as the next drawing's color
16     * distribution is correlated to the last.
17     */
18    
19     #include "color.h"
20    
21     #define NULL 0
22     /* histogram resolution */
23 greg 1.3 #define NRED 24
24 greg 1.1 #define NGRN 32
25 greg 1.3 #define NBLU 16
26 greg 1.1 #define HMAX NGRN
27     /* minimum box count for adaptive partition */
28     #define MINSAMP 7
29 greg 1.3 /* maximum distance^2 before color reassign */
30 greg 1.5 #define MAXDST2 12
31 greg 1.1 /* maximum frame buffer depth */
32     #define FBDEPTH 8
33     /* map a color */
34 greg 1.4 #define map_col(c,p) clrmap[p][ colval(c,p)<1. ? \
35     (int)(colval(c,p)*256.) : 255 ]
36 greg 1.1 /* color partition tree */
37     #define CNODE short
38     #define set_branch(p,c) ((c)<<2|(p))
39     #define set_pval(pv) ((pv)<<2|3)
40     #define is_pval(cn) (((cn)&3)==3)
41     #define part(cn) ((cn)>>2)
42     #define prim(cn) ((cn)&3)
43     #define pval(cn) ((cn)>>2)
44     /* our color table */
45 greg 1.6 static struct tabent {
46 greg 1.3 long sum[3]; /* sum of colors using this entry */
47     long n; /* number of colors */
48     short ent[3]; /* current table value */
49     } clrtab[1<<FBDEPTH];
50 greg 1.1 /* our color correction map */
51 greg 1.4 static BYTE clrmap[3][256];
52 greg 1.1 /* histogram of colors used */
53     static unsigned histo[NRED][NGRN][NBLU];
54     /* initial color cube boundaries */
55     static int CLRCUBE[3][2] = {0,NRED,0,NGRN,0,NBLU};
56     /* color cube partition */
57     static CNODE ctree[1<<(FBDEPTH+1)];
58    
59    
60 greg 1.3 int
61 greg 1.4 new_ctab(ncolors) /* start new color table with max ncolors */
62 greg 1.1 int ncolors;
63     {
64 greg 1.6 if (ncolors < 1)
65 greg 1.3 return(0);
66 greg 1.6 if (ncolors > 1<<FBDEPTH)
67     ncolors = 1<<FBDEPTH;
68 greg 1.3 /* clear color table */
69     bzero(clrtab, sizeof(clrtab));
70     /* partition color space */
71 greg 1.1 cut(ctree, FBDEPTH, CLRCUBE, 0, ncolors);
72     /* clear histogram */
73     bzero(histo, sizeof(histo));
74 greg 1.3 /* return number of colors used */
75     return(ncolors);
76 greg 1.1 }
77    
78    
79     int
80 greg 1.4 get_pixel(col, set_pixel) /* get pixel for color */
81 greg 1.1 COLOR col;
82 greg 1.4 int (*set_pixel)();
83 greg 1.1 {
84 greg 1.3 int r, g, b;
85 greg 1.1 int cv[3];
86 greg 1.3 register union { CNODE *t; struct tabent *e; } p;
87 greg 1.1 register int h;
88 greg 1.3 /* map color */
89     r = map_col(col,RED);
90     g = map_col(col,GRN);
91     b = map_col(col,BLU);
92     /* reduce resolution */
93     cv[RED] = (r*NRED)>>8;
94     cv[GRN] = (g*NGRN)>>8;
95     cv[BLU] = (b*NBLU)>>8;
96     /* add to histogram */
97 greg 1.1 histo[cv[RED]][cv[GRN]][cv[BLU]]++;
98 greg 1.3 /* find pixel in tree */
99     p.t = ctree;
100 greg 1.1 for (h = FBDEPTH; h > 0; h--) {
101 greg 1.3 if (is_pval(*p.t))
102 greg 1.1 break;
103 greg 1.3 if (cv[prim(*p.t)] < part(*p.t))
104     p.t++; /* left branch */
105 greg 1.1 else
106 greg 1.3 p.t += 1<<h; /* right branch */
107 greg 1.1 }
108 greg 1.3 h = pval(*p.t);
109     /* add to color table */
110     p.e = clrtab + h;
111     /* add to sum */
112     p.e->sum[RED] += r;
113     p.e->sum[GRN] += g;
114     p.e->sum[BLU] += b;
115     p.e->n++;
116     /* recompute average */
117     r = p.e->sum[RED] / p.e->n;
118     g = p.e->sum[GRN] / p.e->n;
119     b = p.e->sum[BLU] / p.e->n;
120     /* check for movement */
121     if (p.e->n == 1 ||
122     (r-p.e->ent[RED])*(r-p.e->ent[RED]) +
123     (g-p.e->ent[GRN])*(g-p.e->ent[GRN]) +
124     (b-p.e->ent[BLU])*(b-p.e->ent[BLU]) > MAXDST2) {
125     p.e->ent[RED] = r;
126     p.e->ent[GRN] = g; /* reassign pixel */
127     p.e->ent[BLU] = b;
128 greg 1.1 #ifdef notdef
129 greg 1.3 printf("pixel %d = (%d,%d,%d) (%d refs)\n",
130     h, r, g, b, p.e->n);
131 greg 1.1 #endif
132 greg 1.3 (*set_pixel)(h, r, g, b);
133     }
134     return(h); /* return pixel value */
135 greg 1.1 }
136    
137    
138 greg 1.4 make_gmap(gam) /* make gamma correction map */
139 greg 1.1 double gam;
140     {
141     extern double pow();
142     register int i;
143    
144 greg 1.4 for (i = 0; i < 256; i++)
145     clrmap[RED][i] =
146     clrmap[GRN][i] =
147     clrmap[BLU][i] = 256.0 * pow(i/256.0, 1.0/gam);
148     }
149    
150    
151     set_cmap(rmap, gmap, bmap) /* set custom color correction map */
152     BYTE *rmap, *gmap, *bmap;
153     {
154     bcopy(rmap, clrmap[RED], 256);
155     bcopy(gmap, clrmap[GRN], 256);
156     bcopy(bmap, clrmap[BLU], 256);
157 greg 1.1 }
158    
159    
160     static
161     cut(tree, height, box, c0, c1) /* partition color space */
162     register CNODE *tree;
163     int height;
164     register int box[3][2];
165     int c0, c1;
166     {
167     int kb[3][2];
168    
169 greg 1.3 if (c1-c0 <= 1) { /* assign pixel */
170 greg 1.1 *tree = set_pval(c0);
171     return;
172     }
173     /* split box */
174     *tree = split(box);
175     bcopy(box, kb, sizeof(kb));
176 greg 1.3 /* do left (lesser) branch */
177 greg 1.1 kb[prim(*tree)][1] = part(*tree);
178 greg 1.3 cut(tree+1, height-1, kb, c0, (c0+c1)>>1);
179     /* do right branch */
180 greg 1.1 kb[prim(*tree)][0] = part(*tree);
181     kb[prim(*tree)][1] = box[prim(*tree)][1];
182 greg 1.3 cut(tree+(1<<height), height-1, kb, (c0+c1)>>1, c1);
183 greg 1.1 }
184    
185    
186     static int
187     split(box) /* find median cut for box */
188     register int box[3][2];
189     {
190     #define c0 r
191     register int r, g, b;
192     int pri;
193     int t[HMAX], med;
194     /* find dominant axis */
195     pri = RED;
196     if (box[GRN][1]-box[GRN][0] > box[pri][1]-box[pri][0])
197     pri = GRN;
198     if (box[BLU][1]-box[BLU][0] > box[pri][1]-box[pri][0])
199     pri = BLU;
200     /* sum histogram over box */
201     med = 0;
202     switch (pri) {
203     case RED:
204     for (r = box[RED][0]; r < box[RED][1]; r++) {
205     t[r] = 0;
206     for (g = box[GRN][0]; g < box[GRN][1]; g++)
207     for (b = box[BLU][0]; b < box[BLU][1]; b++)
208     t[r] += histo[r][g][b];
209     med += t[r];
210     }
211     break;
212     case GRN:
213     for (g = box[GRN][0]; g < box[GRN][1]; g++) {
214     t[g] = 0;
215     for (b = box[BLU][0]; b < box[BLU][1]; b++)
216     for (r = box[RED][0]; r < box[RED][1]; r++)
217     t[g] += histo[r][g][b];
218     med += t[g];
219     }
220     break;
221     case BLU:
222     for (b = box[BLU][0]; b < box[BLU][1]; b++) {
223     t[b] = 0;
224     for (r = box[RED][0]; r < box[RED][1]; r++)
225     for (g = box[GRN][0]; g < box[GRN][1]; g++)
226     t[b] += histo[r][g][b];
227     med += t[b];
228     }
229     break;
230     }
231     if (med < MINSAMP) /* if too sparse, split at midpoint */
232     return(set_branch(pri,(box[pri][0]+box[pri][1])>>1));
233     /* find median position */
234     med >>= 1;
235     for (c0 = box[pri][0]; med > 0; c0++)
236     med -= t[c0];
237     if (c0 > (box[pri][0]+box[pri][1])>>1) /* if past the midpoint */
238     c0--; /* part left of median */
239     return(set_branch(pri,c0));
240     #undef c0
241     }