ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.9
Committed: Thu Jan 30 11:37:04 1992 UTC (32 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.8: +2 -4 lines
Log Message:
changed urand() call to frandom() for specular threshold testing

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 extern double specthresh; /* specular sampling threshold */
20 extern double specjitter; /* specular sampling jitter */
21
22 /*
23 * This anisotropic reflection model uses a variant on the
24 * exponential Gaussian used in normal.c.
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29 * 4+ ux uy uz funcfile [transform...]
30 * 0
31 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32 *
33 * Real arguments for MAT_TRANS2 are:
34 * 8 red grn blu rspec u-rough v-rough trans tspec
35 */
36
37 #define BSPEC(m) (6.0) /* specularity parameter b */
38
39 /* specularity flags */
40 #define SP_REFL 01 /* has reflected specular component */
41 #define SP_TRAN 02 /* has transmitted specular */
42 #define SP_PURE 010 /* purely specular (zero roughness) */
43 #define SP_FLAT 020 /* reflecting surface is flat */
44 #define SP_RBLT 040 /* reflection below sample threshold */
45 #define SP_TBLT 0100 /* transmission below threshold */
46 #define SP_BADU 0200 /* bad u direction calculation */
47
48 typedef struct {
49 OBJREC *mp; /* material pointer */
50 RAY *rp; /* ray pointer */
51 short specfl; /* specularity flags, defined above */
52 COLOR mcolor; /* color of this material */
53 COLOR scolor; /* color of specular component */
54 FVECT vrefl; /* vector in reflected direction */
55 FVECT prdir; /* vector in transmitted direction */
56 FVECT u, v; /* u and v vectors orienting anisotropy */
57 double u_alpha; /* u roughness */
58 double v_alpha; /* v roughness */
59 double rdiff, rspec; /* reflected specular, diffuse */
60 double trans; /* transmissivity */
61 double tdiff, tspec; /* transmitted specular, diffuse */
62 FVECT pnorm; /* perturbed surface normal */
63 double pdot; /* perturbed dot product */
64 } ANISODAT; /* anisotropic material data */
65
66
67 diraniso(cval, np, ldir, omega) /* compute source contribution */
68 COLOR cval; /* returned coefficient */
69 register ANISODAT *np; /* material data */
70 FVECT ldir; /* light source direction */
71 double omega; /* light source size */
72 {
73 double ldot;
74 double dtmp, dtmp2;
75 FVECT h;
76 double au2, av2;
77 COLOR ctmp;
78
79 setcolor(cval, 0.0, 0.0, 0.0);
80
81 ldot = DOT(np->pnorm, ldir);
82
83 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
84 return; /* wrong side */
85
86 if (ldot > FTINY && np->rdiff > FTINY) {
87 /*
88 * Compute and add diffuse reflected component to returned
89 * color. The diffuse reflected component will always be
90 * modified by the color of the material.
91 */
92 copycolor(ctmp, np->mcolor);
93 dtmp = ldot * omega * np->rdiff / PI;
94 scalecolor(ctmp, dtmp);
95 addcolor(cval, ctmp);
96 }
97 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) {
98 /*
99 * Compute specular reflection coefficient using
100 * anisotropic gaussian distribution model.
101 */
102 /* add source width if flat */
103 if (np->specfl & SP_FLAT)
104 au2 = av2 = omega/(4.0*PI);
105 else
106 au2 = av2 = 0.0;
107 au2 += np->u_alpha * np->u_alpha;
108 av2 += np->v_alpha * np->v_alpha;
109 /* half vector */
110 h[0] = ldir[0] - np->rp->rdir[0];
111 h[1] = ldir[1] - np->rp->rdir[1];
112 h[2] = ldir[2] - np->rp->rdir[2];
113 normalize(h);
114 /* ellipse */
115 dtmp = DOT(np->u, h);
116 dtmp *= dtmp / au2;
117 dtmp2 = DOT(np->v, h);
118 dtmp2 *= dtmp2 / av2;
119 /* gaussian */
120 dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h));
121 dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2));
122 /* worth using? */
123 if (dtmp > FTINY) {
124 copycolor(ctmp, np->scolor);
125 dtmp *= omega / np->pdot;
126 scalecolor(ctmp, dtmp);
127 addcolor(cval, ctmp);
128 }
129 }
130 if (ldot < -FTINY && np->tdiff > FTINY) {
131 /*
132 * Compute diffuse transmission.
133 */
134 copycolor(ctmp, np->mcolor);
135 dtmp = -ldot * omega * np->tdiff / PI;
136 scalecolor(ctmp, dtmp);
137 addcolor(cval, ctmp);
138 }
139 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) {
140 /*
141 * Compute specular transmission. Specular transmission
142 * is always modified by material color.
143 */
144 /* roughness + source */
145 /* gaussian */
146 dtmp = 0.0;
147 /* worth using? */
148 if (dtmp > FTINY) {
149 copycolor(ctmp, np->mcolor);
150 dtmp *= np->tspec * omega / np->pdot;
151 scalecolor(ctmp, dtmp);
152 addcolor(cval, ctmp);
153 }
154 }
155 }
156
157
158 m_aniso(m, r) /* shade ray that hit something anisotropic */
159 register OBJREC *m;
160 register RAY *r;
161 {
162 ANISODAT nd;
163 double transtest, transdist;
164 double dtmp;
165 COLOR ctmp;
166 register int i;
167 /* easy shadow test */
168 if (r->crtype & SHADOW && m->otype != MAT_TRANS2)
169 return;
170
171 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
172 objerror(m, USER, "bad number of real arguments");
173 nd.mp = m;
174 nd.rp = r;
175 /* get material color */
176 setcolor(nd.mcolor, m->oargs.farg[0],
177 m->oargs.farg[1],
178 m->oargs.farg[2]);
179 /* get roughness */
180 nd.specfl = 0;
181 nd.u_alpha = m->oargs.farg[4];
182 nd.v_alpha = m->oargs.farg[5];
183 if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY)
184 nd.specfl |= SP_PURE;
185 /* reorient if necessary */
186 if (r->rod < 0.0)
187 flipsurface(r);
188 /* get modifiers */
189 raytexture(r, m->omod);
190 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
191 if (nd.pdot < .001)
192 nd.pdot = .001; /* non-zero for diraniso() */
193 multcolor(nd.mcolor, r->pcol); /* modify material color */
194 transtest = 0;
195 /* get specular component */
196 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
197 nd.specfl |= SP_REFL;
198 /* compute specular color */
199 if (m->otype == MAT_METAL2)
200 copycolor(nd.scolor, nd.mcolor);
201 else
202 setcolor(nd.scolor, 1.0, 1.0, 1.0);
203 scalecolor(nd.scolor, nd.rspec);
204 /* improved model */
205 dtmp = exp(-BSPEC(m)*nd.pdot);
206 for (i = 0; i < 3; i++)
207 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
208 nd.rspec += (1.0-nd.rspec)*dtmp;
209 /* check threshold */
210 if (specthresh > FTINY &&
211 ((specthresh >= 1.-FTINY ||
212 specthresh + (.05 - .1*frandom()) > nd.rspec)))
213 nd.specfl |= SP_RBLT;
214 /* compute refl. direction */
215 for (i = 0; i < 3; i++)
216 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
217 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
218 for (i = 0; i < 3; i++) /* safety measure */
219 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
220
221 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
222 RAY lr;
223 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
224 VCOPY(lr.rdir, nd.vrefl);
225 rayvalue(&lr);
226 multcolor(lr.rcol, nd.scolor);
227 addcolor(r->rcol, lr.rcol);
228 }
229 }
230 }
231 /* compute transmission */
232 if (m->otype == MAT_TRANS) {
233 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
234 nd.tspec = nd.trans * m->oargs.farg[7];
235 nd.tdiff = nd.trans - nd.tspec;
236 if (nd.tspec > FTINY) {
237 nd.specfl |= SP_TRAN;
238 /* check threshold */
239 if (specthresh > FTINY &&
240 ((specthresh >= 1.-FTINY ||
241 specthresh +
242 (.05 - .1*frandom()) > nd.tspec)))
243 nd.specfl |= SP_TBLT;
244 if (r->crtype & SHADOW ||
245 DOT(r->pert,r->pert) <= FTINY*FTINY) {
246 VCOPY(nd.prdir, r->rdir);
247 transtest = 2;
248 } else {
249 for (i = 0; i < 3; i++) /* perturb */
250 nd.prdir[i] = r->rdir[i] -
251 0.5*r->pert[i];
252 if (DOT(nd.prdir, r->ron) < -FTINY)
253 normalize(nd.prdir); /* OK */
254 else
255 VCOPY(nd.prdir, r->rdir);
256 }
257 }
258 } else
259 nd.tdiff = nd.tspec = nd.trans = 0.0;
260 /* transmitted ray */
261 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
262 RAY lr;
263 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
264 VCOPY(lr.rdir, nd.prdir);
265 rayvalue(&lr);
266 scalecolor(lr.rcol, nd.tspec);
267 multcolor(lr.rcol, nd.mcolor); /* modified by color */
268 addcolor(r->rcol, lr.rcol);
269 transtest *= bright(lr.rcol);
270 transdist = r->rot + lr.rt;
271 }
272 }
273
274 if (r->crtype & SHADOW) /* the rest is shadow */
275 return;
276 /* diffuse reflection */
277 nd.rdiff = 1.0 - nd.trans - nd.rspec;
278
279 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
280 return; /* 100% pure specular */
281
282 if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING)
283 nd.specfl |= SP_FLAT;
284
285 getacoords(r, &nd); /* set up coordinates */
286
287 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU)))
288 agaussamp(r, &nd);
289
290 if (nd.rdiff > FTINY) { /* ambient from this side */
291 ambient(ctmp, r);
292 if (nd.specfl & SP_RBLT)
293 scalecolor(ctmp, 1.0-nd.trans);
294 else
295 scalecolor(ctmp, nd.rdiff);
296 multcolor(ctmp, nd.mcolor); /* modified by material color */
297 addcolor(r->rcol, ctmp); /* add to returned color */
298 }
299 if (nd.tdiff > FTINY) { /* ambient from other side */
300 flipsurface(r);
301 ambient(ctmp, r);
302 if (nd.specfl & SP_TBLT)
303 scalecolor(ctmp, nd.trans);
304 else
305 scalecolor(ctmp, nd.tdiff);
306 multcolor(ctmp, nd.mcolor); /* modified by color */
307 addcolor(r->rcol, ctmp);
308 flipsurface(r);
309 }
310 /* add direct component */
311 direct(r, diraniso, &nd);
312 /* check distance */
313 if (transtest > bright(r->rcol))
314 r->rt = transdist;
315 }
316
317
318 static
319 getacoords(r, np) /* set up coordinate system */
320 RAY *r;
321 register ANISODAT *np;
322 {
323 register MFUNC *mf;
324 register int i;
325
326 mf = getfunc(np->mp, 3, 0x7, 1);
327 setfunc(np->mp, r);
328 errno = 0;
329 for (i = 0; i < 3; i++)
330 np->u[i] = evalue(mf->ep[i]);
331 if (errno) {
332 objerror(np->mp, WARNING, "compute error");
333 np->specfl |= SP_BADU;
334 return;
335 }
336 multv3(np->u, np->u, mf->f->xfm);
337 fcross(np->v, np->pnorm, np->u);
338 if (normalize(np->v) == 0.0) {
339 objerror(np->mp, WARNING, "illegal orientation vector");
340 np->specfl |= SP_BADU;
341 return;
342 }
343 fcross(np->u, np->v, np->pnorm);
344 }
345
346
347 static
348 agaussamp(r, np) /* sample anisotropic gaussian specular */
349 RAY *r;
350 register ANISODAT *np;
351 {
352 RAY sr;
353 FVECT h;
354 double rv[2];
355 double d, sinp, cosp;
356 register int i;
357 /* compute reflection */
358 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
359 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
360 dimlist[ndims++] = (int)np->mp;
361 d = urand(ilhash(dimlist,ndims)+samplendx);
362 multisamp(rv, 2, d);
363 d = 2.0*PI * rv[0];
364 cosp = np->u_alpha * cos(d);
365 sinp = np->v_alpha * sin(d);
366 d = sqrt(cosp*cosp + sinp*sinp);
367 cosp /= d;
368 sinp /= d;
369 rv[1] = 1.0 - specjitter*rv[1];
370 if (rv[1] <= FTINY)
371 d = 1.0;
372 else
373 d = sqrt(-log(rv[1]) /
374 (cosp*cosp/(np->u_alpha*np->u_alpha) +
375 sinp*sinp/(np->v_alpha*np->v_alpha)));
376 for (i = 0; i < 3; i++)
377 h[i] = np->pnorm[i] +
378 d*(cosp*np->u[i] + sinp*np->v[i]);
379 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
380 for (i = 0; i < 3; i++)
381 sr.rdir[i] = r->rdir[i] + d*h[i];
382 if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
383 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
384 rayvalue(&sr);
385 multcolor(sr.rcol, np->scolor);
386 addcolor(r->rcol, sr.rcol);
387 ndims--;
388 }
389 /* compute transmission */
390 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
391 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
392 dimlist[ndims++] = (int)np->mp;
393 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
394 multisamp(rv, 2, d);
395 d = 2.0*PI * rv[0];
396 cosp = cos(d);
397 sinp = sin(d);
398 rv[1] = 1.0 - specjitter*rv[1];
399 if (rv[1] <= FTINY)
400 d = 1.0;
401 else
402 d = sqrt(-log(rv[1]) /
403 (cosp*cosp*4./(np->u_alpha*np->u_alpha) +
404 sinp*sinp*4./(np->v_alpha*np->v_alpha)));
405 for (i = 0; i < 3; i++)
406 sr.rdir[i] = np->prdir[i] +
407 d*(cosp*np->u[i] + sinp*np->v[i]);
408 if (DOT(sr.rdir, r->ron) < -FTINY)
409 normalize(sr.rdir); /* OK, normalize */
410 else
411 VCOPY(sr.rdir, np->prdir); /* else no jitter */
412 rayvalue(&sr);
413 multcolor(sr.rcol, np->scolor);
414 addcolor(r->rcol, sr.rcol);
415 ndims--;
416 }
417 }