ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.7
Committed: Wed Jan 15 16:59:55 1992 UTC (32 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +28 -1 lines
Log Message:
finally added sampling of transmitted specular

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Shading functions for anisotropic materials.
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "func.h"
16
17 #include "random.h"
18
19 extern double specthresh; /* specular sampling threshold */
20 extern double specjitter; /* specular sampling jitter */
21
22 /*
23 * This anisotropic reflection model uses a variant on the
24 * exponential Gaussian used in normal.c.
25 * We orient the surface towards the incoming ray, so a single
26 * surface can be used to represent an infinitely thin object.
27 *
28 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
29 * 4+ ux uy uz funcfile [transform...]
30 * 0
31 * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
32 *
33 * Real arguments for MAT_TRANS2 are:
34 * 8 red grn blu rspec u-rough v-rough trans tspec
35 */
36
37 #define BSPEC(m) (6.0) /* specularity parameter b */
38
39 /* specularity flags */
40 #define SP_REFL 01 /* has reflected specular component */
41 #define SP_TRAN 02 /* has transmitted specular */
42 #define SP_PURE 010 /* purely specular (zero roughness) */
43 #define SP_FLAT 020 /* reflecting surface is flat */
44 #define SP_RBLT 040 /* reflection below sample threshold */
45 #define SP_TBLT 0100 /* transmission below threshold */
46 #define SP_BADU 0200 /* bad u direction calculation */
47
48 typedef struct {
49 OBJREC *mp; /* material pointer */
50 RAY *rp; /* ray pointer */
51 short specfl; /* specularity flags, defined above */
52 COLOR mcolor; /* color of this material */
53 COLOR scolor; /* color of specular component */
54 FVECT vrefl; /* vector in reflected direction */
55 FVECT prdir; /* vector in transmitted direction */
56 FVECT u, v; /* u and v vectors orienting anisotropy */
57 double u_alpha; /* u roughness */
58 double v_alpha; /* v roughness */
59 double rdiff, rspec; /* reflected specular, diffuse */
60 double trans; /* transmissivity */
61 double tdiff, tspec; /* transmitted specular, diffuse */
62 FVECT pnorm; /* perturbed surface normal */
63 double pdot; /* perturbed dot product */
64 } ANISODAT; /* anisotropic material data */
65
66
67 diraniso(cval, np, ldir, omega) /* compute source contribution */
68 COLOR cval; /* returned coefficient */
69 register ANISODAT *np; /* material data */
70 FVECT ldir; /* light source direction */
71 double omega; /* light source size */
72 {
73 double ldot;
74 double dtmp, dtmp2;
75 FVECT h;
76 double au2, av2;
77 COLOR ctmp;
78
79 setcolor(cval, 0.0, 0.0, 0.0);
80
81 ldot = DOT(np->pnorm, ldir);
82
83 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
84 return; /* wrong side */
85
86 if (ldot > FTINY && np->rdiff > FTINY) {
87 /*
88 * Compute and add diffuse reflected component to returned
89 * color. The diffuse reflected component will always be
90 * modified by the color of the material.
91 */
92 copycolor(ctmp, np->mcolor);
93 dtmp = ldot * omega * np->rdiff / PI;
94 scalecolor(ctmp, dtmp);
95 addcolor(cval, ctmp);
96 }
97 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE|SP_BADU)) == SP_REFL) {
98 /*
99 * Compute specular reflection coefficient using
100 * anisotropic gaussian distribution model.
101 */
102 /* add source width if flat */
103 if (np->specfl & SP_FLAT)
104 au2 = av2 = omega/(4.0*PI);
105 else
106 au2 = av2 = 0.0;
107 au2 += np->u_alpha * np->u_alpha;
108 av2 += np->v_alpha * np->v_alpha;
109 /* half vector */
110 h[0] = ldir[0] - np->rp->rdir[0];
111 h[1] = ldir[1] - np->rp->rdir[1];
112 h[2] = ldir[2] - np->rp->rdir[2];
113 normalize(h);
114 /* ellipse */
115 dtmp = DOT(np->u, h);
116 dtmp *= dtmp / au2;
117 dtmp2 = DOT(np->v, h);
118 dtmp2 *= dtmp2 / av2;
119 /* gaussian */
120 dtmp = (dtmp + dtmp2) / (1.0 + DOT(np->pnorm, h));
121 dtmp = exp(-2.0*dtmp) / (4.0*PI * sqrt(au2*av2));
122 /* worth using? */
123 if (dtmp > FTINY) {
124 copycolor(ctmp, np->scolor);
125 dtmp *= omega / np->pdot;
126 scalecolor(ctmp, dtmp);
127 addcolor(cval, ctmp);
128 }
129 }
130 if (ldot < -FTINY && np->tdiff > FTINY) {
131 /*
132 * Compute diffuse transmission.
133 */
134 copycolor(ctmp, np->mcolor);
135 dtmp = -ldot * omega * np->tdiff / PI;
136 scalecolor(ctmp, dtmp);
137 addcolor(cval, ctmp);
138 }
139 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE|SP_BADU)) == SP_TRAN) {
140 /*
141 * Compute specular transmission. Specular transmission
142 * is always modified by material color.
143 */
144 /* roughness + source */
145 /* gaussian */
146 dtmp = 0.0;
147 /* worth using? */
148 if (dtmp > FTINY) {
149 copycolor(ctmp, np->mcolor);
150 dtmp *= np->tspec * omega / np->pdot;
151 scalecolor(ctmp, dtmp);
152 addcolor(cval, ctmp);
153 }
154 }
155 }
156
157
158 m_aniso(m, r) /* shade ray that hit something anisotropic */
159 register OBJREC *m;
160 register RAY *r;
161 {
162 ANISODAT nd;
163 double transtest, transdist;
164 double dtmp;
165 COLOR ctmp;
166 register int i;
167 /* easy shadow test */
168 if (r->crtype & SHADOW && m->otype != MAT_TRANS2)
169 return;
170
171 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
172 objerror(m, USER, "bad number of real arguments");
173 nd.mp = m;
174 nd.rp = r;
175 /* get material color */
176 setcolor(nd.mcolor, m->oargs.farg[0],
177 m->oargs.farg[1],
178 m->oargs.farg[2]);
179 /* get roughness */
180 nd.specfl = 0;
181 nd.u_alpha = m->oargs.farg[4];
182 nd.v_alpha = m->oargs.farg[5];
183 if (nd.u_alpha <= FTINY || nd.v_alpha <= FTINY)
184 nd.specfl |= SP_PURE;
185 /* reorient if necessary */
186 if (r->rod < 0.0)
187 flipsurface(r);
188 /* get modifiers */
189 raytexture(r, m->omod);
190 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
191 if (nd.pdot < .001)
192 nd.pdot = .001; /* non-zero for diraniso() */
193 multcolor(nd.mcolor, r->pcol); /* modify material color */
194 transtest = 0;
195 /* get specular component */
196 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
197 nd.specfl |= SP_REFL;
198 /* compute specular color */
199 if (m->otype == MAT_METAL2)
200 copycolor(nd.scolor, nd.mcolor);
201 else
202 setcolor(nd.scolor, 1.0, 1.0, 1.0);
203 scalecolor(nd.scolor, nd.rspec);
204 /* improved model */
205 dtmp = exp(-BSPEC(m)*nd.pdot);
206 for (i = 0; i < 3; i++)
207 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
208 nd.rspec += (1.0-nd.rspec)*dtmp;
209 /* check threshold */
210 if (specthresh > FTINY &&
211 ((specthresh >= 1.-FTINY ||
212 specthresh + (.1 - .2*urand(8199+samplendx))
213 > nd.rspec)))
214 nd.specfl |= SP_RBLT;
215 /* compute refl. direction */
216 for (i = 0; i < 3; i++)
217 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
218 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
219 for (i = 0; i < 3; i++) /* safety measure */
220 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
221
222 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
223 RAY lr;
224 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
225 VCOPY(lr.rdir, nd.vrefl);
226 rayvalue(&lr);
227 multcolor(lr.rcol, nd.scolor);
228 addcolor(r->rcol, lr.rcol);
229 }
230 }
231 }
232 /* compute transmission */
233 if (m->otype == MAT_TRANS) {
234 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
235 nd.tspec = nd.trans * m->oargs.farg[7];
236 nd.tdiff = nd.trans - nd.tspec;
237 if (nd.tspec > FTINY) {
238 nd.specfl |= SP_TRAN;
239 /* check threshold */
240 if (specthresh > FTINY &&
241 ((specthresh >= 1.-FTINY ||
242 specthresh +
243 (.1 - .2*urand(7241+samplendx))
244 > nd.tspec)))
245 nd.specfl |= SP_TBLT;
246 if (r->crtype & SHADOW ||
247 DOT(r->pert,r->pert) <= FTINY*FTINY) {
248 VCOPY(nd.prdir, r->rdir);
249 transtest = 2;
250 } else {
251 for (i = 0; i < 3; i++) /* perturb */
252 nd.prdir[i] = r->rdir[i] -
253 0.5*r->pert[i];
254 if (DOT(nd.prdir, r->ron) < -FTINY)
255 normalize(nd.prdir); /* OK */
256 else
257 VCOPY(nd.prdir, r->rdir);
258 }
259 }
260 } else
261 nd.tdiff = nd.tspec = nd.trans = 0.0;
262 /* transmitted ray */
263 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
264 RAY lr;
265 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
266 VCOPY(lr.rdir, nd.prdir);
267 rayvalue(&lr);
268 scalecolor(lr.rcol, nd.tspec);
269 multcolor(lr.rcol, nd.mcolor); /* modified by color */
270 addcolor(r->rcol, lr.rcol);
271 transtest *= bright(lr.rcol);
272 transdist = r->rot + lr.rt;
273 }
274 }
275
276 if (r->crtype & SHADOW) /* the rest is shadow */
277 return;
278 /* diffuse reflection */
279 nd.rdiff = 1.0 - nd.trans - nd.rspec;
280
281 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
282 return; /* 100% pure specular */
283
284 if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING)
285 nd.specfl |= SP_FLAT;
286
287 getacoords(r, &nd); /* set up coordinates */
288
289 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & (SP_PURE|SP_BADU)))
290 agaussamp(r, &nd);
291
292 if (nd.rdiff > FTINY) { /* ambient from this side */
293 ambient(ctmp, r);
294 if (nd.specfl & SP_RBLT)
295 scalecolor(ctmp, 1.0-nd.trans);
296 else
297 scalecolor(ctmp, nd.rdiff);
298 multcolor(ctmp, nd.mcolor); /* modified by material color */
299 addcolor(r->rcol, ctmp); /* add to returned color */
300 }
301 if (nd.tdiff > FTINY) { /* ambient from other side */
302 flipsurface(r);
303 ambient(ctmp, r);
304 if (nd.specfl & SP_TBLT)
305 scalecolor(ctmp, nd.trans);
306 else
307 scalecolor(ctmp, nd.tdiff);
308 multcolor(ctmp, nd.mcolor); /* modified by color */
309 addcolor(r->rcol, ctmp);
310 flipsurface(r);
311 }
312 /* add direct component */
313 direct(r, diraniso, &nd);
314 /* check distance */
315 if (transtest > bright(r->rcol))
316 r->rt = transdist;
317 }
318
319
320 static
321 getacoords(r, np) /* set up coordinate system */
322 RAY *r;
323 register ANISODAT *np;
324 {
325 register MFUNC *mf;
326 register int i;
327
328 mf = getfunc(np->mp, 3, 0x7, 1);
329 setfunc(np->mp, r);
330 errno = 0;
331 for (i = 0; i < 3; i++)
332 np->u[i] = evalue(mf->ep[i]);
333 if (errno) {
334 objerror(np->mp, WARNING, "compute error");
335 np->specfl |= SP_BADU;
336 return;
337 }
338 multv3(np->u, np->u, mf->f->xfm);
339 fcross(np->v, np->pnorm, np->u);
340 if (normalize(np->v) == 0.0) {
341 objerror(np->mp, WARNING, "illegal orientation vector");
342 np->specfl |= SP_BADU;
343 return;
344 }
345 fcross(np->u, np->v, np->pnorm);
346 }
347
348
349 static
350 agaussamp(r, np) /* sample anisotropic gaussian specular */
351 RAY *r;
352 register ANISODAT *np;
353 {
354 RAY sr;
355 FVECT h;
356 double rv[2];
357 double d, sinp, cosp;
358 register int i;
359 /* compute reflection */
360 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
361 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
362 dimlist[ndims++] = (int)np->mp;
363 d = urand(ilhash(dimlist,ndims)+samplendx);
364 multisamp(rv, 2, d);
365 d = 2.0*PI * rv[0];
366 cosp = np->u_alpha * cos(d);
367 sinp = np->v_alpha * sin(d);
368 d = sqrt(cosp*cosp + sinp*sinp);
369 cosp /= d;
370 sinp /= d;
371 rv[1] = 1.0 - specjitter*rv[1];
372 if (rv[1] <= FTINY)
373 d = 1.0;
374 else
375 d = sqrt(-log(rv[1]) /
376 (cosp*cosp/(np->u_alpha*np->u_alpha) +
377 sinp*sinp/(np->v_alpha*np->v_alpha)));
378 for (i = 0; i < 3; i++)
379 h[i] = np->pnorm[i] +
380 d*(cosp*np->u[i] + sinp*np->v[i]);
381 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
382 for (i = 0; i < 3; i++)
383 sr.rdir[i] = r->rdir[i] + d*h[i];
384 if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
385 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
386 rayvalue(&sr);
387 multcolor(sr.rcol, np->scolor);
388 addcolor(r->rcol, sr.rcol);
389 ndims--;
390 }
391 /* compute transmission */
392 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
393 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
394 dimlist[ndims++] = (int)np->mp;
395 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
396 multisamp(rv, 2, d);
397 d = 2.0*PI * rv[0];
398 cosp = cos(d);
399 sinp = sin(d);
400 rv[1] = 1.0 - specjitter*rv[1];
401 if (rv[1] <= FTINY)
402 d = 1.0;
403 else
404 d = sqrt(-log(rv[1]) /
405 (cosp*cosp*4./(np->u_alpha*np->u_alpha) +
406 sinp*sinp*4./(np->v_alpha*np->v_alpha)));
407 for (i = 0; i < 3; i++)
408 sr.rdir[i] = np->prdir[i] +
409 d*(cosp*np->u[i] + sinp*np->v[i]);
410 if (DOT(sr.rdir, r->ron) < -FTINY)
411 normalize(sr.rdir); /* OK, normalize */
412 else
413 VCOPY(sr.rdir, np->prdir); /* else no jitter */
414 rayvalue(&sr);
415 multcolor(sr.rcol, np->scolor);
416 addcolor(r->rcol, sr.rcol);
417 ndims--;
418 }
419 }