ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.57
Committed: Thu Dec 4 05:26:28 2014 UTC (9 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.56: +14 -15 lines
Log Message:
Improved behavior of anisotropic reflections

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: aniso.c,v 2.56 2014/01/25 18:27:39 greg Exp $";
3 #endif
4 /*
5 * Shading functions for anisotropic materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "otypes.h"
13 #include "rtotypes.h"
14 #include "source.h"
15 #include "func.h"
16 #include "random.h"
17
18 #ifndef MAXITER
19 #define MAXITER 10 /* maximum # specular ray attempts */
20 #endif
21
22 /*
23 * This routine implements the anisotropic Gaussian
24 * model described by Ward in Siggraph `92 article, updated with
25 * normalization and sampling adjustments due to Geisler-Moroder and Duer.
26 * We orient the surface towards the incoming ray, so a single
27 * surface can be used to represent an infinitely thin object.
28 *
29 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
30 * 4+ ux uy uz funcfile [transform...]
31 * 0
32 * 6 red grn blu specular-frac. u-rough v-rough
33 *
34 * Real arguments for MAT_TRANS2 are:
35 * 8 red grn blu rspec u-rough v-rough trans tspec
36 */
37
38 /* specularity flags */
39 #define SP_REFL 01 /* has reflected specular component */
40 #define SP_TRAN 02 /* has transmitted specular */
41 #define SP_FLAT 04 /* reflecting surface is flat */
42 #define SP_RBLT 010 /* reflection below sample threshold */
43 #define SP_TBLT 020 /* transmission below threshold */
44
45 typedef struct {
46 OBJREC *mp; /* material pointer */
47 RAY *rp; /* ray pointer */
48 short specfl; /* specularity flags, defined above */
49 COLOR mcolor; /* color of this material */
50 COLOR scolor; /* color of specular component */
51 FVECT vrefl; /* vector in reflected direction */
52 FVECT prdir; /* vector in transmitted direction */
53 FVECT u, v; /* u and v vectors orienting anisotropy */
54 double u_alpha; /* u roughness */
55 double v_alpha; /* v roughness */
56 double rdiff, rspec; /* reflected specular, diffuse */
57 double trans; /* transmissivity */
58 double tdiff, tspec; /* transmitted specular, diffuse */
59 FVECT pnorm; /* perturbed surface normal */
60 double pdot; /* perturbed dot product */
61 } ANISODAT; /* anisotropic material data */
62
63 static void getacoords(ANISODAT *np);
64 static void agaussamp(ANISODAT *np);
65
66
67 static void
68 diraniso( /* compute source contribution */
69 COLOR cval, /* returned coefficient */
70 void *nnp, /* material data */
71 FVECT ldir, /* light source direction */
72 double omega /* light source size */
73 )
74 {
75 ANISODAT *np = nnp;
76 double ldot;
77 double dtmp, dtmp1, dtmp2;
78 FVECT h;
79 double au2, av2;
80 COLOR ctmp;
81
82 setcolor(cval, 0.0, 0.0, 0.0);
83
84 ldot = DOT(np->pnorm, ldir);
85
86 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
87 return; /* wrong side */
88
89 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
90 /*
91 * Compute and add diffuse reflected component to returned
92 * color. The diffuse reflected component will always be
93 * modified by the color of the material.
94 */
95 copycolor(ctmp, np->mcolor);
96 dtmp = ldot * omega * np->rdiff * (1.0/PI);
97 scalecolor(ctmp, dtmp);
98 addcolor(cval, ctmp);
99 }
100 if (ldot > FTINY && np->specfl&SP_REFL) {
101 /*
102 * Compute specular reflection coefficient using
103 * anisotropic Gaussian distribution model.
104 */
105 /* add source width if flat */
106 if (np->specfl & SP_FLAT)
107 au2 = av2 = omega * (0.25/PI);
108 else
109 au2 = av2 = 0.0;
110 au2 += np->u_alpha*np->u_alpha;
111 av2 += np->v_alpha*np->v_alpha;
112 /* half vector */
113 VSUB(h, ldir, np->rp->rdir);
114 /* ellipse */
115 dtmp1 = DOT(np->u, h);
116 dtmp1 *= dtmp1 / au2;
117 dtmp2 = DOT(np->v, h);
118 dtmp2 *= dtmp2 / av2;
119 /* new W-G-M-D model */
120 dtmp = DOT(np->pnorm, h);
121 dtmp *= dtmp;
122 dtmp1 = (dtmp1 + dtmp2) / dtmp;
123 dtmp = exp(-dtmp1) * DOT(h,h) /
124 (PI * dtmp*dtmp * sqrt(au2*av2));
125 /* worth using? */
126 if (dtmp > FTINY) {
127 copycolor(ctmp, np->scolor);
128 dtmp *= ldot * omega;
129 scalecolor(ctmp, dtmp);
130 addcolor(cval, ctmp);
131 }
132 }
133 if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
134 /*
135 * Compute diffuse transmission.
136 */
137 copycolor(ctmp, np->mcolor);
138 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
139 scalecolor(ctmp, dtmp);
140 addcolor(cval, ctmp);
141 }
142 if (ldot < -FTINY && np->specfl&SP_TRAN) {
143 /*
144 * Compute specular transmission. Specular transmission
145 * is always modified by material color.
146 */
147 /* roughness + source */
148 au2 = av2 = omega * (1.0/PI);
149 au2 += np->u_alpha*np->u_alpha;
150 av2 += np->v_alpha*np->v_alpha;
151 /* "half vector" */
152 VSUB(h, ldir, np->prdir);
153 dtmp = DOT(h,h);
154 if (dtmp > FTINY*FTINY) {
155 dtmp1 = DOT(h,np->pnorm);
156 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
157 if (dtmp > FTINY*FTINY) {
158 dtmp1 = DOT(h,np->u);
159 dtmp1 *= dtmp1 / au2;
160 dtmp2 = DOT(h,np->v);
161 dtmp2 *= dtmp2 / av2;
162 dtmp = (dtmp1 + dtmp2) / dtmp;
163 }
164 } else
165 dtmp = 0.0;
166 /* Gaussian */
167 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
168 /* worth using? */
169 if (dtmp > FTINY) {
170 copycolor(ctmp, np->mcolor);
171 dtmp *= np->tspec * omega;
172 scalecolor(ctmp, dtmp);
173 addcolor(cval, ctmp);
174 }
175 }
176 }
177
178
179 int
180 m_aniso( /* shade ray that hit something anisotropic */
181 OBJREC *m,
182 RAY *r
183 )
184 {
185 ANISODAT nd;
186 COLOR ctmp;
187 int i;
188 /* easy shadow test */
189 if (r->crtype & SHADOW)
190 return(1);
191
192 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
193 objerror(m, USER, "bad number of real arguments");
194 /* check for back side */
195 if (r->rod < 0.0) {
196 if (!backvis) {
197 raytrans(r);
198 return(1);
199 }
200 raytexture(r, m->omod);
201 flipsurface(r); /* reorient if backvis */
202 } else
203 raytexture(r, m->omod);
204 /* get material color */
205 nd.mp = m;
206 nd.rp = r;
207 setcolor(nd.mcolor, m->oargs.farg[0],
208 m->oargs.farg[1],
209 m->oargs.farg[2]);
210 /* get roughness */
211 nd.specfl = 0;
212 nd.u_alpha = m->oargs.farg[4];
213 nd.v_alpha = m->oargs.farg[5];
214 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
215 objerror(m, USER, "roughness too small");
216
217 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
218 if (nd.pdot < .001)
219 nd.pdot = .001; /* non-zero for diraniso() */
220 multcolor(nd.mcolor, r->pcol); /* modify material color */
221 /* get specular component */
222 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
223 nd.specfl |= SP_REFL;
224 /* compute specular color */
225 if (m->otype == MAT_METAL2)
226 copycolor(nd.scolor, nd.mcolor);
227 else
228 setcolor(nd.scolor, 1.0, 1.0, 1.0);
229 scalecolor(nd.scolor, nd.rspec);
230 /* check threshold */
231 if (specthresh >= nd.rspec-FTINY)
232 nd.specfl |= SP_RBLT;
233 /* compute refl. direction */
234 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot);
235 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
236 VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod);
237 }
238 /* compute transmission */
239 if (m->otype == MAT_TRANS2) {
240 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
241 nd.tspec = nd.trans * m->oargs.farg[7];
242 nd.tdiff = nd.trans - nd.tspec;
243 if (nd.tspec > FTINY) {
244 nd.specfl |= SP_TRAN;
245 /* check threshold */
246 if (specthresh >= nd.tspec-FTINY)
247 nd.specfl |= SP_TBLT;
248 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
249 VCOPY(nd.prdir, r->rdir);
250 } else {
251 for (i = 0; i < 3; i++) /* perturb */
252 nd.prdir[i] = r->rdir[i] - r->pert[i];
253 if (DOT(nd.prdir, r->ron) < -FTINY)
254 normalize(nd.prdir); /* OK */
255 else
256 VCOPY(nd.prdir, r->rdir);
257 }
258 }
259 } else
260 nd.tdiff = nd.tspec = nd.trans = 0.0;
261
262 /* diffuse reflection */
263 nd.rdiff = 1.0 - nd.trans - nd.rspec;
264
265 if (r->ro != NULL && isflat(r->ro->otype))
266 nd.specfl |= SP_FLAT;
267
268 getacoords(&nd); /* set up coordinates */
269
270 if (nd.specfl & (SP_REFL|SP_TRAN))
271 agaussamp(&nd);
272
273 if (nd.rdiff > FTINY) { /* ambient from this side */
274 copycolor(ctmp, nd.mcolor); /* modified by material color */
275 scalecolor(ctmp, nd.rdiff);
276 if (nd.specfl & SP_RBLT) /* add in specular as well? */
277 addcolor(ctmp, nd.scolor);
278 multambient(ctmp, r, nd.pnorm);
279 addcolor(r->rcol, ctmp); /* add to returned color */
280 }
281 if (nd.tdiff > FTINY) { /* ambient from other side */
282 FVECT bnorm;
283
284 flipsurface(r);
285 bnorm[0] = -nd.pnorm[0];
286 bnorm[1] = -nd.pnorm[1];
287 bnorm[2] = -nd.pnorm[2];
288 copycolor(ctmp, nd.mcolor); /* modified by color */
289 if (nd.specfl & SP_TBLT)
290 scalecolor(ctmp, nd.trans);
291 else
292 scalecolor(ctmp, nd.tdiff);
293 multambient(ctmp, r, bnorm);
294 addcolor(r->rcol, ctmp);
295 flipsurface(r);
296 }
297 /* add direct component */
298 direct(r, diraniso, &nd);
299
300 return(1);
301 }
302
303
304 static void
305 getacoords( /* set up coordinate system */
306 ANISODAT *np
307 )
308 {
309 MFUNC *mf;
310 int i;
311
312 mf = getfunc(np->mp, 3, 0x7, 1);
313 setfunc(np->mp, np->rp);
314 errno = 0;
315 for (i = 0; i < 3; i++)
316 np->u[i] = evalue(mf->ep[i]);
317 if ((errno == EDOM) | (errno == ERANGE))
318 np->u[0] = np->u[1] = np->u[2] = 0.0;
319 if (mf->fxp != &unitxf)
320 multv3(np->u, np->u, mf->fxp->xfm);
321 fcross(np->v, np->pnorm, np->u);
322 if (normalize(np->v) == 0.0) {
323 if (fabs(np->u_alpha - np->v_alpha) > 0.001)
324 objerror(np->mp, WARNING, "illegal orientation vector");
325 getperpendicular(np->u, np->pnorm); /* punting */
326 fcross(np->v, np->pnorm, np->u);
327 np->u_alpha = np->v_alpha = sqrt( 0.5 *
328 (np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) );
329 } else
330 fcross(np->u, np->v, np->pnorm);
331 }
332
333
334 static void
335 agaussamp( /* sample anisotropic Gaussian specular */
336 ANISODAT *np
337 )
338 {
339 RAY sr;
340 FVECT h;
341 double rv[2];
342 double d, sinp, cosp;
343 COLOR scol;
344 int maxiter, ntrials, nstarget, nstaken;
345 int i;
346 /* compute reflection */
347 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
348 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
349 nstarget = 1;
350 if (specjitter > 1.5) { /* multiple samples? */
351 nstarget = specjitter*np->rp->rweight + .5;
352 if (sr.rweight <= minweight*nstarget)
353 nstarget = sr.rweight/minweight;
354 if (nstarget > 1) {
355 d = 1./nstarget;
356 scalecolor(sr.rcoef, d);
357 sr.rweight *= d;
358 } else
359 nstarget = 1;
360 }
361 setcolor(scol, 0., 0., 0.);
362 dimlist[ndims++] = (int)(size_t)np->mp;
363 maxiter = MAXITER*nstarget;
364 for (nstaken = ntrials = 0; nstaken < nstarget &&
365 ntrials < maxiter; ntrials++) {
366 if (ntrials)
367 d = frandom();
368 else
369 d = urand(ilhash(dimlist,ndims)+samplendx);
370 multisamp(rv, 2, d);
371 d = 2.0*PI * rv[0];
372 cosp = tcos(d) * np->u_alpha;
373 sinp = tsin(d) * np->v_alpha;
374 d = 1./sqrt(cosp*cosp + sinp*sinp);
375 cosp *= d;
376 sinp *= d;
377 if ((0. <= specjitter) & (specjitter < 1.))
378 rv[1] = 1.0 - specjitter*rv[1];
379 if (rv[1] <= FTINY)
380 d = 1.0;
381 else
382 d = sqrt(-log(rv[1]) /
383 (cosp*cosp/(np->u_alpha*np->u_alpha) +
384 sinp*sinp/(np->v_alpha*np->v_alpha)));
385 for (i = 0; i < 3; i++)
386 h[i] = np->pnorm[i] +
387 d*(cosp*np->u[i] + sinp*np->v[i]);
388 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
389 VSUM(sr.rdir, np->rp->rdir, h, d);
390 /* sample rejection test */
391 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
392 continue;
393 checknorm(sr.rdir);
394 if (nstarget > 1) { /* W-G-M-D adjustment */
395 if (nstaken) rayclear(&sr);
396 rayvalue(&sr);
397 d = 2./(1. + np->rp->rod/d);
398 scalecolor(sr.rcol, d);
399 addcolor(scol, sr.rcol);
400 } else {
401 rayvalue(&sr);
402 multcolor(sr.rcol, sr.rcoef);
403 addcolor(np->rp->rcol, sr.rcol);
404 }
405 ++nstaken;
406 }
407 if (nstarget > 1) { /* final W-G-M-D weighting */
408 multcolor(scol, sr.rcoef);
409 d = (double)nstarget/ntrials;
410 scalecolor(scol, d);
411 addcolor(np->rp->rcol, scol);
412 }
413 ndims--;
414 }
415 /* compute transmission */
416 copycolor(sr.rcoef, np->mcolor); /* modify by material color */
417 scalecolor(sr.rcoef, np->tspec);
418 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
419 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
420 nstarget = 1;
421 if (specjitter > 1.5) { /* multiple samples? */
422 nstarget = specjitter*np->rp->rweight + .5;
423 if (sr.rweight <= minweight*nstarget)
424 nstarget = sr.rweight/minweight;
425 if (nstarget > 1) {
426 d = 1./nstarget;
427 scalecolor(sr.rcoef, d);
428 sr.rweight *= d;
429 } else
430 nstarget = 1;
431 }
432 dimlist[ndims++] = (int)(size_t)np->mp;
433 maxiter = MAXITER*nstarget;
434 for (nstaken = ntrials = 0; nstaken < nstarget &&
435 ntrials < maxiter; ntrials++) {
436 if (ntrials)
437 d = frandom();
438 else
439 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
440 multisamp(rv, 2, d);
441 d = 2.0*PI * rv[0];
442 cosp = tcos(d) * np->u_alpha;
443 sinp = tsin(d) * np->v_alpha;
444 d = 1./sqrt(cosp*cosp + sinp*sinp);
445 cosp *= d;
446 sinp *= d;
447 if ((0. <= specjitter) & (specjitter < 1.))
448 rv[1] = 1.0 - specjitter*rv[1];
449 if (rv[1] <= FTINY)
450 d = 1.0;
451 else
452 d = sqrt(-log(rv[1]) /
453 (cosp*cosp/(np->u_alpha*np->u_alpha) +
454 sinp*sinp/(np->v_alpha*np->v_alpha)));
455 for (i = 0; i < 3; i++)
456 sr.rdir[i] = np->prdir[i] +
457 d*(cosp*np->u[i] + sinp*np->v[i]);
458 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
459 continue;
460 normalize(sr.rdir); /* OK, normalize */
461 if (nstaken) /* multi-sampling */
462 rayclear(&sr);
463 rayvalue(&sr);
464 multcolor(sr.rcol, sr.rcoef);
465 addcolor(np->rp->rcol, sr.rcol);
466 ++nstaken;
467 }
468 ndims--;
469 }
470 }