ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/aniso.c
Revision: 2.54
Committed: Sun Jul 29 19:01:39 2012 UTC (11 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.53: +21 -25 lines
Log Message:
Added ashik2 type for anisotropic Ashikhmin-Shirley BRDF model

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: aniso.c,v 2.53 2012/06/09 07:16:47 greg Exp $";
3 #endif
4 /*
5 * Shading functions for anisotropic materials.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "otypes.h"
13 #include "rtotypes.h"
14 #include "source.h"
15 #include "func.h"
16 #include "random.h"
17
18 #ifndef MAXITER
19 #define MAXITER 10 /* maximum # specular ray attempts */
20 #endif
21
22 /*
23 * This routine implements the anisotropic Gaussian
24 * model described by Ward in Siggraph `92 article, updated with
25 * normalization and sampling adjustments due to Geisler-Moroder and Duer.
26 * We orient the surface towards the incoming ray, so a single
27 * surface can be used to represent an infinitely thin object.
28 *
29 * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
30 * 4+ ux uy uz funcfile [transform...]
31 * 0
32 * 6 red grn blu specular-frac. u-rough v-rough
33 *
34 * Real arguments for MAT_TRANS2 are:
35 * 8 red grn blu rspec u-rough v-rough trans tspec
36 */
37
38 /* specularity flags */
39 #define SP_REFL 01 /* has reflected specular component */
40 #define SP_TRAN 02 /* has transmitted specular */
41 #define SP_FLAT 04 /* reflecting surface is flat */
42 #define SP_RBLT 010 /* reflection below sample threshold */
43 #define SP_TBLT 020 /* transmission below threshold */
44 #define SP_BADU 040 /* bad u direction calculation */
45
46 typedef struct {
47 OBJREC *mp; /* material pointer */
48 RAY *rp; /* ray pointer */
49 short specfl; /* specularity flags, defined above */
50 COLOR mcolor; /* color of this material */
51 COLOR scolor; /* color of specular component */
52 FVECT vrefl; /* vector in reflected direction */
53 FVECT prdir; /* vector in transmitted direction */
54 FVECT u, v; /* u and v vectors orienting anisotropy */
55 double u_alpha; /* u roughness */
56 double v_alpha; /* v roughness */
57 double rdiff, rspec; /* reflected specular, diffuse */
58 double trans; /* transmissivity */
59 double tdiff, tspec; /* transmitted specular, diffuse */
60 FVECT pnorm; /* perturbed surface normal */
61 double pdot; /* perturbed dot product */
62 } ANISODAT; /* anisotropic material data */
63
64 static void getacoords(RAY *r, ANISODAT *np);
65 static void agaussamp(RAY *r, ANISODAT *np);
66
67
68 static void
69 diraniso( /* compute source contribution */
70 COLOR cval, /* returned coefficient */
71 void *nnp, /* material data */
72 FVECT ldir, /* light source direction */
73 double omega /* light source size */
74 )
75 {
76 ANISODAT *np = nnp;
77 double ldot;
78 double dtmp, dtmp1, dtmp2;
79 FVECT h;
80 double au2, av2;
81 COLOR ctmp;
82
83 setcolor(cval, 0.0, 0.0, 0.0);
84
85 ldot = DOT(np->pnorm, ldir);
86
87 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88 return; /* wrong side */
89
90 if ((ldot > FTINY) & (np->rdiff > FTINY)) {
91 /*
92 * Compute and add diffuse reflected component to returned
93 * color. The diffuse reflected component will always be
94 * modified by the color of the material.
95 */
96 copycolor(ctmp, np->mcolor);
97 dtmp = ldot * omega * np->rdiff * (1.0/PI);
98 scalecolor(ctmp, dtmp);
99 addcolor(cval, ctmp);
100 }
101 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
102 /*
103 * Compute specular reflection coefficient using
104 * anisotropic Gaussian distribution model.
105 */
106 /* add source width if flat */
107 if (np->specfl & SP_FLAT)
108 au2 = av2 = omega * (0.25/PI);
109 else
110 au2 = av2 = 0.0;
111 au2 += np->u_alpha*np->u_alpha;
112 av2 += np->v_alpha*np->v_alpha;
113 /* half vector */
114 VSUB(h, ldir, np->rp->rdir);
115 /* ellipse */
116 dtmp1 = DOT(np->u, h);
117 dtmp1 *= dtmp1 / au2;
118 dtmp2 = DOT(np->v, h);
119 dtmp2 *= dtmp2 / av2;
120 /* new W-G-M-D model */
121 dtmp = DOT(np->pnorm, h);
122 dtmp *= dtmp;
123 dtmp1 = (dtmp1 + dtmp2) / dtmp;
124 dtmp = exp(-dtmp1) * DOT(h,h) /
125 (PI * dtmp*dtmp * sqrt(au2*av2));
126 /* worth using? */
127 if (dtmp > FTINY) {
128 copycolor(ctmp, np->scolor);
129 dtmp *= ldot * omega;
130 scalecolor(ctmp, dtmp);
131 addcolor(cval, ctmp);
132 }
133 }
134 if ((ldot < -FTINY) & (np->tdiff > FTINY)) {
135 /*
136 * Compute diffuse transmission.
137 */
138 copycolor(ctmp, np->mcolor);
139 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
140 scalecolor(ctmp, dtmp);
141 addcolor(cval, ctmp);
142 }
143 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
144 /*
145 * Compute specular transmission. Specular transmission
146 * is always modified by material color.
147 */
148 /* roughness + source */
149 au2 = av2 = omega * (1.0/PI);
150 au2 += np->u_alpha*np->u_alpha;
151 av2 += np->v_alpha*np->v_alpha;
152 /* "half vector" */
153 VSUB(h, ldir, np->prdir);
154 dtmp = DOT(h,h);
155 if (dtmp > FTINY*FTINY) {
156 dtmp1 = DOT(h,np->pnorm);
157 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
158 if (dtmp > FTINY*FTINY) {
159 dtmp1 = DOT(h,np->u);
160 dtmp1 *= dtmp1 / au2;
161 dtmp2 = DOT(h,np->v);
162 dtmp2 *= dtmp2 / av2;
163 dtmp = (dtmp1 + dtmp2) / dtmp;
164 }
165 } else
166 dtmp = 0.0;
167 /* Gaussian */
168 dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2));
169 /* worth using? */
170 if (dtmp > FTINY) {
171 copycolor(ctmp, np->mcolor);
172 dtmp *= np->tspec * omega;
173 scalecolor(ctmp, dtmp);
174 addcolor(cval, ctmp);
175 }
176 }
177 }
178
179
180 int
181 m_aniso( /* shade ray that hit something anisotropic */
182 OBJREC *m,
183 RAY *r
184 )
185 {
186 ANISODAT nd;
187 COLOR ctmp;
188 int i;
189 /* easy shadow test */
190 if (r->crtype & SHADOW)
191 return(1);
192
193 if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
194 objerror(m, USER, "bad number of real arguments");
195 /* check for back side */
196 if (r->rod < 0.0) {
197 if (!backvis && m->otype != MAT_TRANS2) {
198 raytrans(r);
199 return(1);
200 }
201 raytexture(r, m->omod);
202 flipsurface(r); /* reorient if backvis */
203 } else
204 raytexture(r, m->omod);
205 /* get material color */
206 nd.mp = m;
207 nd.rp = r;
208 setcolor(nd.mcolor, m->oargs.farg[0],
209 m->oargs.farg[1],
210 m->oargs.farg[2]);
211 /* get roughness */
212 nd.specfl = 0;
213 nd.u_alpha = m->oargs.farg[4];
214 nd.v_alpha = m->oargs.farg[5];
215 if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY))
216 objerror(m, USER, "roughness too small");
217
218 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
219 if (nd.pdot < .001)
220 nd.pdot = .001; /* non-zero for diraniso() */
221 multcolor(nd.mcolor, r->pcol); /* modify material color */
222 /* get specular component */
223 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
224 nd.specfl |= SP_REFL;
225 /* compute specular color */
226 if (m->otype == MAT_METAL2)
227 copycolor(nd.scolor, nd.mcolor);
228 else
229 setcolor(nd.scolor, 1.0, 1.0, 1.0);
230 scalecolor(nd.scolor, nd.rspec);
231 /* check threshold */
232 if (specthresh >= nd.rspec-FTINY)
233 nd.specfl |= SP_RBLT;
234 /* compute refl. direction */
235 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.0*nd.pdot);
236 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
237 VSUM(nd.vrefl, r->rdir, r->ron, 2.0*r->rod);
238 }
239 /* compute transmission */
240 if (m->otype == MAT_TRANS2) {
241 nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
242 nd.tspec = nd.trans * m->oargs.farg[7];
243 nd.tdiff = nd.trans - nd.tspec;
244 if (nd.tspec > FTINY) {
245 nd.specfl |= SP_TRAN;
246 /* check threshold */
247 if (specthresh >= nd.tspec-FTINY)
248 nd.specfl |= SP_TBLT;
249 if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
250 VCOPY(nd.prdir, r->rdir);
251 } else {
252 for (i = 0; i < 3; i++) /* perturb */
253 nd.prdir[i] = r->rdir[i] - r->pert[i];
254 if (DOT(nd.prdir, r->ron) < -FTINY)
255 normalize(nd.prdir); /* OK */
256 else
257 VCOPY(nd.prdir, r->rdir);
258 }
259 }
260 } else
261 nd.tdiff = nd.tspec = nd.trans = 0.0;
262
263 /* diffuse reflection */
264 nd.rdiff = 1.0 - nd.trans - nd.rspec;
265
266 if (r->ro != NULL && isflat(r->ro->otype))
267 nd.specfl |= SP_FLAT;
268
269 getacoords(r, &nd); /* set up coordinates */
270
271 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
272 agaussamp(r, &nd);
273
274 if (nd.rdiff > FTINY) { /* ambient from this side */
275 copycolor(ctmp, nd.mcolor); /* modified by material color */
276 scalecolor(ctmp, nd.rdiff);
277 if (nd.specfl & SP_RBLT) /* add in specular as well? */
278 addcolor(ctmp, nd.scolor);
279 multambient(ctmp, r, nd.pnorm);
280 addcolor(r->rcol, ctmp); /* add to returned color */
281 }
282 if (nd.tdiff > FTINY) { /* ambient from other side */
283 FVECT bnorm;
284
285 flipsurface(r);
286 bnorm[0] = -nd.pnorm[0];
287 bnorm[1] = -nd.pnorm[1];
288 bnorm[2] = -nd.pnorm[2];
289 copycolor(ctmp, nd.mcolor); /* modified by color */
290 if (nd.specfl & SP_TBLT)
291 scalecolor(ctmp, nd.trans);
292 else
293 scalecolor(ctmp, nd.tdiff);
294 multambient(ctmp, r, bnorm);
295 addcolor(r->rcol, ctmp);
296 flipsurface(r);
297 }
298 /* add direct component */
299 direct(r, diraniso, &nd);
300
301 return(1);
302 }
303
304
305 static void
306 getacoords( /* set up coordinate system */
307 RAY *r,
308 ANISODAT *np
309 )
310 {
311 MFUNC *mf;
312 int i;
313
314 mf = getfunc(np->mp, 3, 0x7, 1);
315 setfunc(np->mp, r);
316 errno = 0;
317 for (i = 0; i < 3; i++)
318 np->u[i] = evalue(mf->ep[i]);
319 if ((errno == EDOM) | (errno == ERANGE)) {
320 objerror(np->mp, WARNING, "compute error");
321 np->specfl |= SP_BADU;
322 return;
323 }
324 if (mf->fxp != &unitxf)
325 multv3(np->u, np->u, mf->fxp->xfm);
326 fcross(np->v, np->pnorm, np->u);
327 if (normalize(np->v) == 0.0) {
328 objerror(np->mp, WARNING, "illegal orientation vector");
329 np->specfl |= SP_BADU;
330 return;
331 }
332 fcross(np->u, np->v, np->pnorm);
333 }
334
335
336 static void
337 agaussamp( /* sample anisotropic Gaussian specular */
338 RAY *r,
339 ANISODAT *np
340 )
341 {
342 RAY sr;
343 FVECT h;
344 double rv[2];
345 double d, sinp, cosp;
346 COLOR scol;
347 int maxiter, ntrials, nstarget, nstaken;
348 int i;
349 /* compute reflection */
350 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
351 rayorigin(&sr, SPECULAR, r, np->scolor) == 0) {
352 nstarget = 1;
353 if (specjitter > 1.5) { /* multiple samples? */
354 nstarget = specjitter*r->rweight + .5;
355 if (sr.rweight <= minweight*nstarget)
356 nstarget = sr.rweight/minweight;
357 if (nstarget > 1) {
358 d = 1./nstarget;
359 scalecolor(sr.rcoef, d);
360 sr.rweight *= d;
361 } else
362 nstarget = 1;
363 }
364 setcolor(scol, 0., 0., 0.);
365 dimlist[ndims++] = (int)(size_t)np->mp;
366 maxiter = MAXITER*nstarget;
367 for (nstaken = ntrials = 0; nstaken < nstarget &&
368 ntrials < maxiter; ntrials++) {
369 if (ntrials)
370 d = frandom();
371 else
372 d = urand(ilhash(dimlist,ndims)+samplendx);
373 multisamp(rv, 2, d);
374 d = 2.0*PI * rv[0];
375 cosp = tcos(d) * np->u_alpha;
376 sinp = tsin(d) * np->v_alpha;
377 d = 1./sqrt(cosp*cosp + sinp*sinp);
378 cosp *= d;
379 sinp *= d;
380 if ((0. <= specjitter) & (specjitter < 1.))
381 rv[1] = 1.0 - specjitter*rv[1];
382 if (rv[1] <= FTINY)
383 d = 1.0;
384 else
385 d = sqrt(-log(rv[1]) /
386 (cosp*cosp/(np->u_alpha*np->u_alpha) +
387 sinp*sinp/(np->v_alpha*np->v_alpha)));
388 for (i = 0; i < 3; i++)
389 h[i] = np->pnorm[i] +
390 d*(cosp*np->u[i] + sinp*np->v[i]);
391 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
392 VSUM(sr.rdir, r->rdir, h, d);
393 /* sample rejection test */
394 if ((d = DOT(sr.rdir, r->ron)) <= FTINY)
395 continue;
396 checknorm(sr.rdir);
397 if (nstarget > 1) { /* W-G-M-D adjustment */
398 if (nstaken) rayclear(&sr);
399 rayvalue(&sr);
400 d = 2./(1. + r->rod/d);
401 scalecolor(sr.rcol, d);
402 addcolor(scol, sr.rcol);
403 } else {
404 rayvalue(&sr);
405 multcolor(sr.rcol, sr.rcoef);
406 addcolor(r->rcol, sr.rcol);
407 }
408 ++nstaken;
409 }
410 if (nstarget > 1) { /* final W-G-M-D weighting */
411 multcolor(scol, sr.rcoef);
412 d = (double)nstarget/ntrials;
413 scalecolor(scol, d);
414 addcolor(r->rcol, scol);
415 }
416 ndims--;
417 }
418 /* compute transmission */
419 copycolor(sr.rcoef, np->mcolor); /* modify by material color */
420 scalecolor(sr.rcoef, np->tspec);
421 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
422 rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) {
423 nstarget = 1;
424 if (specjitter > 1.5) { /* multiple samples? */
425 nstarget = specjitter*r->rweight + .5;
426 if (sr.rweight <= minweight*nstarget)
427 nstarget = sr.rweight/minweight;
428 if (nstarget > 1) {
429 d = 1./nstarget;
430 scalecolor(sr.rcoef, d);
431 sr.rweight *= d;
432 } else
433 nstarget = 1;
434 }
435 dimlist[ndims++] = (int)(size_t)np->mp;
436 maxiter = MAXITER*nstarget;
437 for (nstaken = ntrials = 0; nstaken < nstarget &&
438 ntrials < maxiter; ntrials++) {
439 if (ntrials)
440 d = frandom();
441 else
442 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
443 multisamp(rv, 2, d);
444 d = 2.0*PI * rv[0];
445 cosp = tcos(d) * np->u_alpha;
446 sinp = tsin(d) * np->v_alpha;
447 d = 1./sqrt(cosp*cosp + sinp*sinp);
448 cosp *= d;
449 sinp *= d;
450 if ((0. <= specjitter) & (specjitter < 1.))
451 rv[1] = 1.0 - specjitter*rv[1];
452 if (rv[1] <= FTINY)
453 d = 1.0;
454 else
455 d = sqrt(-log(rv[1]) /
456 (cosp*cosp/(np->u_alpha*np->u_alpha) +
457 sinp*sinp/(np->v_alpha*np->v_alpha)));
458 for (i = 0; i < 3; i++)
459 sr.rdir[i] = np->prdir[i] +
460 d*(cosp*np->u[i] + sinp*np->v[i]);
461 if (DOT(sr.rdir, r->ron) >= -FTINY)
462 continue;
463 normalize(sr.rdir); /* OK, normalize */
464 if (nstaken) /* multi-sampling */
465 rayclear(&sr);
466 rayvalue(&sr);
467 multcolor(sr.rcol, sr.rcoef);
468 addcolor(r->rcol, sr.rcol);
469 ++nstaken;
470 }
471 ndims--;
472 }
473 }